{"title":"弹性六足机器人","authors":"D. Trivun, H. Dindo, B. Lacevic","doi":"10.1109/ICAT.2017.8171613","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method of learning desired behaviour of the specific robotic system and transfer of the existing knowledge in the event of partial system failure. Six-legged robot (hexapod) built on top of the Bioloid platform is used for the method verification. We use genetic algorithms to optimize the hexapod's gait, after which we simulate physical damage caused to the robot. The goal of this method is to optimize the gait in accordance with the actual robot morphology, instead of the assumed one. Also, knowledge that was previously gained will be transferred in order to improve the results. Nonstandard genetic algorithm with the specific mixed population is used for this.","PeriodicalId":112404,"journal":{"name":"2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Resilient hexapod robot\",\"authors\":\"D. Trivun, H. Dindo, B. Lacevic\",\"doi\":\"10.1109/ICAT.2017.8171613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a method of learning desired behaviour of the specific robotic system and transfer of the existing knowledge in the event of partial system failure. Six-legged robot (hexapod) built on top of the Bioloid platform is used for the method verification. We use genetic algorithms to optimize the hexapod's gait, after which we simulate physical damage caused to the robot. The goal of this method is to optimize the gait in accordance with the actual robot morphology, instead of the assumed one. Also, knowledge that was previously gained will be transferred in order to improve the results. Nonstandard genetic algorithm with the specific mixed population is used for this.\",\"PeriodicalId\":112404,\"journal\":{\"name\":\"2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAT.2017.8171613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 XXVI International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT.2017.8171613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we present a method of learning desired behaviour of the specific robotic system and transfer of the existing knowledge in the event of partial system failure. Six-legged robot (hexapod) built on top of the Bioloid platform is used for the method verification. We use genetic algorithms to optimize the hexapod's gait, after which we simulate physical damage caused to the robot. The goal of this method is to optimize the gait in accordance with the actual robot morphology, instead of the assumed one. Also, knowledge that was previously gained will be transferred in order to improve the results. Nonstandard genetic algorithm with the specific mixed population is used for this.