A. Prosser, G. Cardoso, J. Chramowicz, J. Marriner, R. Rivera, M. Turqueti
{"title":"超新星加速探测器的数据采集、存储和控制体系结构","authors":"A. Prosser, G. Cardoso, J. Chramowicz, J. Marriner, R. Rivera, M. Turqueti","doi":"10.1109/RTC.2007.4382759","DOIUrl":null,"url":null,"abstract":"The SuperNova Acceleration Probe (SNAP) instrument is being designed to collect image and spectroscopic data for the study of dark energy in the universe. In this paper, we describe a distributed architecture for the data acquisition system which interfaces to visible light and infrared imaging detectors. The architecture includes the use of NAND flash memory for the storage of exposures in a file system. Also described is an FPGA-based lossless data compression algorithm with a configurable pre-scaler based on a novel square root data compression method to improve compression performance. The required interactions of the distributed elements with an instrument control unit will be described as well.","PeriodicalId":217483,"journal":{"name":"2007 15th IEEE-NPSS Real-Time Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Acquisition, Storage and Control Architecture for the SuperNova Acceleration Probe\",\"authors\":\"A. Prosser, G. Cardoso, J. Chramowicz, J. Marriner, R. Rivera, M. Turqueti\",\"doi\":\"10.1109/RTC.2007.4382759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The SuperNova Acceleration Probe (SNAP) instrument is being designed to collect image and spectroscopic data for the study of dark energy in the universe. In this paper, we describe a distributed architecture for the data acquisition system which interfaces to visible light and infrared imaging detectors. The architecture includes the use of NAND flash memory for the storage of exposures in a file system. Also described is an FPGA-based lossless data compression algorithm with a configurable pre-scaler based on a novel square root data compression method to improve compression performance. The required interactions of the distributed elements with an instrument control unit will be described as well.\",\"PeriodicalId\":217483,\"journal\":{\"name\":\"2007 15th IEEE-NPSS Real-Time Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 15th IEEE-NPSS Real-Time Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTC.2007.4382759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 15th IEEE-NPSS Real-Time Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTC.2007.4382759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data Acquisition, Storage and Control Architecture for the SuperNova Acceleration Probe
The SuperNova Acceleration Probe (SNAP) instrument is being designed to collect image and spectroscopic data for the study of dark energy in the universe. In this paper, we describe a distributed architecture for the data acquisition system which interfaces to visible light and infrared imaging detectors. The architecture includes the use of NAND flash memory for the storage of exposures in a file system. Also described is an FPGA-based lossless data compression algorithm with a configurable pre-scaler based on a novel square root data compression method to improve compression performance. The required interactions of the distributed elements with an instrument control unit will be described as well.