利用混合规划进行计划修复

Patrick Bechon, M. Barbier, C. Lesire, G. Infantes, V. Vidal
{"title":"利用混合规划进行计划修复","authors":"Patrick Bechon, M. Barbier, C. Lesire, G. Infantes, V. Vidal","doi":"10.1109/ECMR.2015.7324201","DOIUrl":null,"url":null,"abstract":"In this work we propose a plan repair algorithm designed to be used in a real-life setting for a team of autonomous robots. This algorithm is built on top of a hybrid planner. This planner mixes partial order planning and hierarchical planning. This allows the creation of a plan with temporal flexibility while using human knowledge to improve the search process. Simulation shows that repairing increases the number of solved problems or at least reduces the number of plans explored. The algorithm uses the same hierarchical knowledge as the underlying planner, thus needing no more human modelling to properly run. We show that using this knowledge can help the reparation, even when some half-executed abstract actions are present in the plan.","PeriodicalId":142754,"journal":{"name":"2015 European Conference on Mobile Robots (ECMR)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Using hybrid planning for plan reparation\",\"authors\":\"Patrick Bechon, M. Barbier, C. Lesire, G. Infantes, V. Vidal\",\"doi\":\"10.1109/ECMR.2015.7324201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we propose a plan repair algorithm designed to be used in a real-life setting for a team of autonomous robots. This algorithm is built on top of a hybrid planner. This planner mixes partial order planning and hierarchical planning. This allows the creation of a plan with temporal flexibility while using human knowledge to improve the search process. Simulation shows that repairing increases the number of solved problems or at least reduces the number of plans explored. The algorithm uses the same hierarchical knowledge as the underlying planner, thus needing no more human modelling to properly run. We show that using this knowledge can help the reparation, even when some half-executed abstract actions are present in the plan.\",\"PeriodicalId\":142754,\"journal\":{\"name\":\"2015 European Conference on Mobile Robots (ECMR)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECMR.2015.7324201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2015.7324201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在这项工作中,我们提出了一种计划修复算法,设计用于一个自主机器人团队的现实环境。该算法建立在混合规划器的基础上。这个规划器混合了部分顺序规划和分层规划。这允许创建具有时间灵活性的计划,同时使用人类知识来改进搜索过程。仿真表明,修复增加了解决问题的数量,或者至少减少了探索方案的数量。该算法使用与底层规划器相同的层次知识,因此不需要更多的人为建模来正确运行。我们表明,使用这些知识可以帮助修复,即使计划中存在一些未执行的抽象动作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using hybrid planning for plan reparation
In this work we propose a plan repair algorithm designed to be used in a real-life setting for a team of autonomous robots. This algorithm is built on top of a hybrid planner. This planner mixes partial order planning and hierarchical planning. This allows the creation of a plan with temporal flexibility while using human knowledge to improve the search process. Simulation shows that repairing increases the number of solved problems or at least reduces the number of plans explored. The algorithm uses the same hierarchical knowledge as the underlying planner, thus needing no more human modelling to properly run. We show that using this knowledge can help the reparation, even when some half-executed abstract actions are present in the plan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信