应用数据压缩和人工智能技术预测新西伯利亚地区的人口和经济指标

Константин Сергеевич Чирихин
{"title":"应用数据压缩和人工智能技术预测新西伯利亚地区的人口和经济指标","authors":"Константин Сергеевич Чирихин","doi":"10.25743/ict.2019.37.81.034","DOIUrl":null,"url":null,"abstract":"Известно, что методы сжатия данных могут успешно использоваться для прогнозирования временных рядов. Разнообразные эвристики, присутствующие в современных алгоритмах сжатия, позволяют выявлять сложные закономерности в данных. В настоящей работе мы применяем данный подход для прогнозирования основных демографических и экономических показателей Новосибирской области. При этом мы совместно используем различные программы для сжатия данных, включая модели на основе формальных грамматик.\n It is known, that data compression methods can be successfully used in time series forecasting. Modern data compression algorithms contain a variety of heuristics for searching of complex regularities. In this paper, we apply this approach to forecasting of the main demographic and economic indicators of the Novosibirsk region. To obtain forecasts, we combine different programs for data compression, including implementations of grammar-based codes.","PeriodicalId":438052,"journal":{"name":"XVII Российская конференция “Распределенные информационно-вычислительные ресурсы: Цифровые двойники и большие данные”","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APPLICATION OF DATA COMPRESSION AND ARTIFICIAL INTELLIGENCE TECHNIQUES TO FORECASTING OF DEMOGRAPHIC AND ECONOMIC INDICATORS OF THE NOVOSIBIRSK REGION\",\"authors\":\"Константин Сергеевич Чирихин\",\"doi\":\"10.25743/ict.2019.37.81.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Известно, что методы сжатия данных могут успешно использоваться для прогнозирования временных рядов. Разнообразные эвристики, присутствующие в современных алгоритмах сжатия, позволяют выявлять сложные закономерности в данных. В настоящей работе мы применяем данный подход для прогнозирования основных демографических и экономических показателей Новосибирской области. При этом мы совместно используем различные программы для сжатия данных, включая модели на основе формальных грамматик.\\n It is known, that data compression methods can be successfully used in time series forecasting. Modern data compression algorithms contain a variety of heuristics for searching of complex regularities. In this paper, we apply this approach to forecasting of the main demographic and economic indicators of the Novosibirsk region. To obtain forecasts, we combine different programs for data compression, including implementations of grammar-based codes.\",\"PeriodicalId\":438052,\"journal\":{\"name\":\"XVII Российская конференция “Распределенные информационно-вычислительные ресурсы: Цифровые двойники и большие данные”\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"XVII Российская конференция “Распределенные информационно-вычислительные ресурсы: Цифровые двойники и большие данные”\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25743/ict.2019.37.81.034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"XVII Российская конференция “Распределенные информационно-вычислительные ресурсы: Цифровые двойники и большие данные”","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25743/ict.2019.37.81.034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,数据压缩方法可成功用于时间序列预测。现代压缩算法中的各种启发式方法使我们能够识别数据中的复杂模式。在本文中,我们将这种方法应用于预测新西伯利亚地区的主要人口和经济指标。在此过程中,我们联合使用了各种数据压缩程序,包括基于形式化语法的模型。众所周知,数据压缩方法可成功用于时间序列预测。现代数据压缩算法包含多种用于搜索复杂规律性的启发式方法。在本文中,我们将这种方法应用于新西伯利亚地区主要人口和经济指标的预测。为了获得预测结果,我们结合了不同的数据压缩程序,包括基于语法的代码执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
APPLICATION OF DATA COMPRESSION AND ARTIFICIAL INTELLIGENCE TECHNIQUES TO FORECASTING OF DEMOGRAPHIC AND ECONOMIC INDICATORS OF THE NOVOSIBIRSK REGION
Известно, что методы сжатия данных могут успешно использоваться для прогнозирования временных рядов. Разнообразные эвристики, присутствующие в современных алгоритмах сжатия, позволяют выявлять сложные закономерности в данных. В настоящей работе мы применяем данный подход для прогнозирования основных демографических и экономических показателей Новосибирской области. При этом мы совместно используем различные программы для сжатия данных, включая модели на основе формальных грамматик. It is known, that data compression methods can be successfully used in time series forecasting. Modern data compression algorithms contain a variety of heuristics for searching of complex regularities. In this paper, we apply this approach to forecasting of the main demographic and economic indicators of the Novosibirsk region. To obtain forecasts, we combine different programs for data compression, including implementations of grammar-based codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信