基于视觉和运动融合信息的导航系统

Chunming Yan, Jun Luo, Huayan Pu, Shaorong Xie, J. Gu
{"title":"基于视觉和运动融合信息的导航系统","authors":"Chunming Yan, Jun Luo, Huayan Pu, Shaorong Xie, J. Gu","doi":"10.1109/ICINFA.2015.7279280","DOIUrl":null,"url":null,"abstract":"This paper proposes an autonomous navigation system for mobile robots using two unscented Kalman filters (UKFs) and a slip detector to fuse the vision and motion information. The vision information is extracted from images captured by cameras, while the motion data are gathered by two wheel encoders, an accelerometer and a gyroscope. Firstly, the description of navigation algorithm, including the system overview, the image processing procedure and the coordinate transformation, are presented. Then kinematic models of two UKFs and data integration are introduced. Analyzing the results of experiments, the multi-sensor fusion system has more stability and accuracy in comparison with the single sensor system.","PeriodicalId":186975,"journal":{"name":"2015 IEEE International Conference on Information and Automation","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A navigation system based on vision and motion fusion information using two UFKs\",\"authors\":\"Chunming Yan, Jun Luo, Huayan Pu, Shaorong Xie, J. Gu\",\"doi\":\"10.1109/ICINFA.2015.7279280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an autonomous navigation system for mobile robots using two unscented Kalman filters (UKFs) and a slip detector to fuse the vision and motion information. The vision information is extracted from images captured by cameras, while the motion data are gathered by two wheel encoders, an accelerometer and a gyroscope. Firstly, the description of navigation algorithm, including the system overview, the image processing procedure and the coordinate transformation, are presented. Then kinematic models of two UKFs and data integration are introduced. Analyzing the results of experiments, the multi-sensor fusion system has more stability and accuracy in comparison with the single sensor system.\",\"PeriodicalId\":186975,\"journal\":{\"name\":\"2015 IEEE International Conference on Information and Automation\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Information and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2015.7279280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Information and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2015.7279280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种移动机器人自主导航系统,该系统采用两个无气味卡尔曼滤波器(UKFs)和一个滑动检测器来融合视觉和运动信息。视觉信息是从摄像头捕获的图像中提取的,而运动数据则由两个轮式编码器、一个加速度计和一个陀螺仪收集。首先对导航算法进行了描述,包括系统概述、图像处理过程和坐标变换。然后介绍了两种ukf的运动学模型和数据集成。实验结果表明,与单传感器系统相比,多传感器融合系统具有更高的稳定性和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A navigation system based on vision and motion fusion information using two UFKs
This paper proposes an autonomous navigation system for mobile robots using two unscented Kalman filters (UKFs) and a slip detector to fuse the vision and motion information. The vision information is extracted from images captured by cameras, while the motion data are gathered by two wheel encoders, an accelerometer and a gyroscope. Firstly, the description of navigation algorithm, including the system overview, the image processing procedure and the coordinate transformation, are presented. Then kinematic models of two UKFs and data integration are introduced. Analyzing the results of experiments, the multi-sensor fusion system has more stability and accuracy in comparison with the single sensor system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信