热像仪的镜头畸变校正以提高小型无人机的航空成像

S. Yahyanejad, Jakub Misiorny, B. Rinner
{"title":"热像仪的镜头畸变校正以提高小型无人机的航空成像","authors":"S. Yahyanejad, Jakub Misiorny, B. Rinner","doi":"10.1109/ROSE.2011.6058528","DOIUrl":null,"url":null,"abstract":"Lens distortion as a result of the shape and construction of a photographic lens is a common problem in image acquisition. Thermal cameras are no exception to this artifact. So far many methods have been developed to formulate the distortion model and almost all of them exploit the patterns in visible range to calibrate the lenses in RGB cameras. A checkerboard is among the most common and well-defined patterns for RGB camera calibration. Unfortunately, most of those patterns will not be easily visible in images taken by a thermal camera. Furthermore, since the thermal cameras measure the infrared radiation (heat), the conductivity of the heat to the bordering objects in the pattern might mitigate sharp edges, which will make detection of relevant features within the pattern harder and less precise. In this paper we propose an algorithm to construct a calibration pattern visible for the thermal infrared cameras. We show how to extract robust features out of the sensed checkerboard pattern which is used afterward for lens distortion correction. Further, we evaluate our method and compare it to results obtained from well established algorithms for visible-light lens calibration. We also demonstrate how distortion correction improves the image registration between thermal and RGB aerial images taken by small-scale unmanned aerial vehicles (UAVs).","PeriodicalId":361472,"journal":{"name":"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Lens distortion correction for thermal cameras to improve aerial imaging with small-scale UAVs\",\"authors\":\"S. Yahyanejad, Jakub Misiorny, B. Rinner\",\"doi\":\"10.1109/ROSE.2011.6058528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lens distortion as a result of the shape and construction of a photographic lens is a common problem in image acquisition. Thermal cameras are no exception to this artifact. So far many methods have been developed to formulate the distortion model and almost all of them exploit the patterns in visible range to calibrate the lenses in RGB cameras. A checkerboard is among the most common and well-defined patterns for RGB camera calibration. Unfortunately, most of those patterns will not be easily visible in images taken by a thermal camera. Furthermore, since the thermal cameras measure the infrared radiation (heat), the conductivity of the heat to the bordering objects in the pattern might mitigate sharp edges, which will make detection of relevant features within the pattern harder and less precise. In this paper we propose an algorithm to construct a calibration pattern visible for the thermal infrared cameras. We show how to extract robust features out of the sensed checkerboard pattern which is used afterward for lens distortion correction. Further, we evaluate our method and compare it to results obtained from well established algorithms for visible-light lens calibration. We also demonstrate how distortion correction improves the image registration between thermal and RGB aerial images taken by small-scale unmanned aerial vehicles (UAVs).\",\"PeriodicalId\":361472,\"journal\":{\"name\":\"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROSE.2011.6058528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE.2011.6058528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

由于摄影镜头的形状和结构导致的镜头畸变是图像采集中的一个常见问题。热像仪也不例外。目前已经发展了许多方法来建立畸变模型,几乎都是利用可见光范围内的模式来标定RGB相机的镜头。棋盘是RGB相机校准中最常见和定义良好的模式之一。不幸的是,这些图案中的大多数在热像仪拍摄的图像中不容易看到。此外,由于热像仪测量的是红外辐射(热),热对图案中边缘物体的传导性可能会减轻尖锐的边缘,这将使图案内相关特征的检测变得更加困难和不那么精确。本文提出了一种构造热红外摄像机可见标定模式的算法。我们展示了如何从检测到的棋盘图案中提取鲁棒特征,这些特征随后用于镜头畸变校正。此外,我们评估了我们的方法,并将其与已建立的可见光透镜校准算法的结果进行了比较。我们还演示了畸变校正如何改善小型无人机(uav)拍摄的热和RGB航空图像之间的图像配准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lens distortion correction for thermal cameras to improve aerial imaging with small-scale UAVs
Lens distortion as a result of the shape and construction of a photographic lens is a common problem in image acquisition. Thermal cameras are no exception to this artifact. So far many methods have been developed to formulate the distortion model and almost all of them exploit the patterns in visible range to calibrate the lenses in RGB cameras. A checkerboard is among the most common and well-defined patterns for RGB camera calibration. Unfortunately, most of those patterns will not be easily visible in images taken by a thermal camera. Furthermore, since the thermal cameras measure the infrared radiation (heat), the conductivity of the heat to the bordering objects in the pattern might mitigate sharp edges, which will make detection of relevant features within the pattern harder and less precise. In this paper we propose an algorithm to construct a calibration pattern visible for the thermal infrared cameras. We show how to extract robust features out of the sensed checkerboard pattern which is used afterward for lens distortion correction. Further, we evaluate our method and compare it to results obtained from well established algorithms for visible-light lens calibration. We also demonstrate how distortion correction improves the image registration between thermal and RGB aerial images taken by small-scale unmanned aerial vehicles (UAVs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信