贫困的空间建模:空间误差模型与地理加权回归的比较

Achi Rinaldi, Y. Susianto, Budi Santoso, Wahyu Kusumaningtyas
{"title":"贫困的空间建模:空间误差模型与地理加权回归的比较","authors":"Achi Rinaldi, Y. Susianto, Budi Santoso, Wahyu Kusumaningtyas","doi":"10.24042/AJPM.V12I1.8671","DOIUrl":null,"url":null,"abstract":"This study aims to analyze poverty using spatial models. The researchers also compared the Spatial Error Model (SEM) and Geographically Weighted Regression (GWR). The comparison of the two models was based on the estimation evaluation criteria and the constructed spatial associations. Spatial regression is considered very appropriate to be used to model the relationship pattern between poverty and explanatory variables when the observed data has a spatial effect caused by the proximity between the observation areas. The spatial dependence of errors on observational data can be overcome using SEM, while the effect of heterogeneity of spatial variance can overcome using GWR.","PeriodicalId":385020,"journal":{"name":"Al-Jabar : Jurnal Pendidikan Matematika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spatial Modeling for Poverty: The Comparison of Spatial Error Model and Geographic Weighted Regression\",\"authors\":\"Achi Rinaldi, Y. Susianto, Budi Santoso, Wahyu Kusumaningtyas\",\"doi\":\"10.24042/AJPM.V12I1.8671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to analyze poverty using spatial models. The researchers also compared the Spatial Error Model (SEM) and Geographically Weighted Regression (GWR). The comparison of the two models was based on the estimation evaluation criteria and the constructed spatial associations. Spatial regression is considered very appropriate to be used to model the relationship pattern between poverty and explanatory variables when the observed data has a spatial effect caused by the proximity between the observation areas. The spatial dependence of errors on observational data can be overcome using SEM, while the effect of heterogeneity of spatial variance can overcome using GWR.\",\"PeriodicalId\":385020,\"journal\":{\"name\":\"Al-Jabar : Jurnal Pendidikan Matematika\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Jabar : Jurnal Pendidikan Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24042/AJPM.V12I1.8671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Jabar : Jurnal Pendidikan Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24042/AJPM.V12I1.8671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究旨在利用空间模型分析贫困。研究人员还比较了空间误差模型(SEM)和地理加权回归(GWR)。基于估算评价标准和构建的空间关联对两种模型进行比较。当观测数据由于观测区域之间的接近性而具有空间效应时,空间回归被认为非常适合用于模拟贫困与解释变量之间的关系模式。SEM可以克服误差对观测数据的空间依赖性,GWR可以克服空间方差异质性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial Modeling for Poverty: The Comparison of Spatial Error Model and Geographic Weighted Regression
This study aims to analyze poverty using spatial models. The researchers also compared the Spatial Error Model (SEM) and Geographically Weighted Regression (GWR). The comparison of the two models was based on the estimation evaluation criteria and the constructed spatial associations. Spatial regression is considered very appropriate to be used to model the relationship pattern between poverty and explanatory variables when the observed data has a spatial effect caused by the proximity between the observation areas. The spatial dependence of errors on observational data can be overcome using SEM, while the effect of heterogeneity of spatial variance can overcome using GWR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信