基于深度学习方法的英语文本垃圾邮件检测机制

S. Kaddoura, O. Alfandi, Nadia Dahmani
{"title":"基于深度学习方法的英语文本垃圾邮件检测机制","authors":"S. Kaddoura, O. Alfandi, Nadia Dahmani","doi":"10.1109/WETICE49692.2020.00045","DOIUrl":null,"url":null,"abstract":"Phishing emails are emails that pretend to be from a trusted company that target users to provide personal or financial information. Sometimes, they include links that may download malicious software on user’s computers, when clicked. Such emails are easily detected by spam filters that classify any email with a link as a phishing email. However, emails that have no links, link-less emails, requires more effort from the spam filters. Although many researches have been done on this topic, spam filters are still classifying some benign emails as phishing and vice-versa. This paper is focused on classifying link-less emails using machine learning approach, deep neural networks. Deep neural networks differs from simple neural network by having multiple hidden layers where data must be processed before reaching the output layer. The data used in this research is publicly available online. Hyper parameter optimization, was performed, using different settings on the data. In order to demonstrate the effectiveness of the approach, precision, recall and accuracy were computed. The results show that the deep neural network performed well in many of its settings.","PeriodicalId":114214,"journal":{"name":"2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A Spam Email Detection Mechanism for English Language Text Emails Using Deep Learning Approach\",\"authors\":\"S. Kaddoura, O. Alfandi, Nadia Dahmani\",\"doi\":\"10.1109/WETICE49692.2020.00045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phishing emails are emails that pretend to be from a trusted company that target users to provide personal or financial information. Sometimes, they include links that may download malicious software on user’s computers, when clicked. Such emails are easily detected by spam filters that classify any email with a link as a phishing email. However, emails that have no links, link-less emails, requires more effort from the spam filters. Although many researches have been done on this topic, spam filters are still classifying some benign emails as phishing and vice-versa. This paper is focused on classifying link-less emails using machine learning approach, deep neural networks. Deep neural networks differs from simple neural network by having multiple hidden layers where data must be processed before reaching the output layer. The data used in this research is publicly available online. Hyper parameter optimization, was performed, using different settings on the data. In order to demonstrate the effectiveness of the approach, precision, recall and accuracy were computed. The results show that the deep neural network performed well in many of its settings.\",\"PeriodicalId\":114214,\"journal\":{\"name\":\"2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WETICE49692.2020.00045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WETICE49692.2020.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

网络钓鱼电子邮件是假装来自值得信赖的公司的电子邮件,目标用户提供个人或财务信息。有时,当用户点击时,它们包含可能下载恶意软件的链接。这样的电子邮件很容易被垃圾邮件过滤器检测到,垃圾邮件过滤器会将任何带有链接的电子邮件分类为网络钓鱼电子邮件。然而,没有链接的电子邮件,没有链接的电子邮件,需要更多的努力从垃圾邮件过滤器。尽管在这个话题上已经做了很多研究,垃圾邮件过滤器仍然将一些良性的电子邮件分类为网络钓鱼,反之亦然。本文的重点是使用机器学习方法,深度神经网络对无链接电子邮件进行分类。深度神经网络不同于简单的神经网络,它有多个隐藏层,数据在到达输出层之前必须经过处理。这项研究中使用的数据在网上是公开的。在数据上使用不同的设置,进行了超参数优化。为了验证该方法的有效性,计算了查全率、查全率和查准率。结果表明,深度神经网络在许多设置中表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Spam Email Detection Mechanism for English Language Text Emails Using Deep Learning Approach
Phishing emails are emails that pretend to be from a trusted company that target users to provide personal or financial information. Sometimes, they include links that may download malicious software on user’s computers, when clicked. Such emails are easily detected by spam filters that classify any email with a link as a phishing email. However, emails that have no links, link-less emails, requires more effort from the spam filters. Although many researches have been done on this topic, spam filters are still classifying some benign emails as phishing and vice-versa. This paper is focused on classifying link-less emails using machine learning approach, deep neural networks. Deep neural networks differs from simple neural network by having multiple hidden layers where data must be processed before reaching the output layer. The data used in this research is publicly available online. Hyper parameter optimization, was performed, using different settings on the data. In order to demonstrate the effectiveness of the approach, precision, recall and accuracy were computed. The results show that the deep neural network performed well in many of its settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信