基于k-Medoid聚类数优化和反馈排序模型的优质XML片段寻找

Zhong Minjuan
{"title":"基于k-Medoid聚类数优化和反馈排序模型的优质XML片段寻找","authors":"Zhong Minjuan","doi":"10.1109/ITA.2013.83","DOIUrl":null,"url":null,"abstract":"Due to low quality feedback set, traditional pseudo relevance feedback may bring into topic drift. This paper studies how to identify or find good xml documents(fragments) for feedback. We propose an effective method, in which xml element search results clustering is performed firstly by k-mediod cluster number optimization, and then those fragments with high relevant to the query are identified and ranked in the top position by ranking model. The final experimental results show that the proposed approach produces better performance and achieves high quality feedback set.","PeriodicalId":285687,"journal":{"name":"2013 International Conference on Information Technology and Applications","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Finding Good XML Fragments Based on k-Medoid Cluster Number Optimization and Ranking Model for Feedback\",\"authors\":\"Zhong Minjuan\",\"doi\":\"10.1109/ITA.2013.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to low quality feedback set, traditional pseudo relevance feedback may bring into topic drift. This paper studies how to identify or find good xml documents(fragments) for feedback. We propose an effective method, in which xml element search results clustering is performed firstly by k-mediod cluster number optimization, and then those fragments with high relevant to the query are identified and ranked in the top position by ranking model. The final experimental results show that the proposed approach produces better performance and achieves high quality feedback set.\",\"PeriodicalId\":285687,\"journal\":{\"name\":\"2013 International Conference on Information Technology and Applications\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Information Technology and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2013.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Information Technology and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2013.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

传统的伪相关反馈由于反馈集质量不高,容易造成话题漂移。本文研究了如何识别或找到好的xml文档(片段)进行反馈。本文提出了一种有效的方法,首先通过k- medium聚类数优化对xml元素搜索结果进行聚类,然后通过排序模型识别出与查询相关度高的片段并将其排在最前面。最后的实验结果表明,该方法具有更好的性能和高质量的反馈集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding Good XML Fragments Based on k-Medoid Cluster Number Optimization and Ranking Model for Feedback
Due to low quality feedback set, traditional pseudo relevance feedback may bring into topic drift. This paper studies how to identify or find good xml documents(fragments) for feedback. We propose an effective method, in which xml element search results clustering is performed firstly by k-mediod cluster number optimization, and then those fragments with high relevant to the query are identified and ranked in the top position by ranking model. The final experimental results show that the proposed approach produces better performance and achieves high quality feedback set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信