线粒体内脂肪酸活化增强了腺嘌呤核苷酸转位酶的控制强度。

Biomedica biochimica acta Pub Date : 1991-01-01
P Schönfeld, R Bohnensack
{"title":"线粒体内脂肪酸活化增强了腺嘌呤核苷酸转位酶的控制强度。","authors":"P Schönfeld,&nbsp;R Bohnensack","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In incubations with isolated rat liver mitochondria we studied the fuel properties of octanoate as medium-chain fatty acid and respiratory substrate and the extent of control exerted by adenine nucleotide translocase on mitochondrial respiration. While, compared with pyruvate, octanoate improved the hydrogen supply in the active state to be seen from a high reduction of the mitochondrial NAD(P) system and an increased delta psi, it also decreased the efficiency of energy transduction indicated by a low ADP/O ratio. Based on measurements of the dependence of respiration on the extramitochondrial ATP/ADP ratio, we conclude that a switch-over from pyruvate to fatty acid oxidation does not change the kinetic parameters which make respiration respond to the ATP/ADP ratio. It is shown that the decrease of the exchangeable intramitochondrial adenine nucleotide pool due to the activation of octanoate results in a decrease of the activity of the adenine nucleotide translocase and an increase of its flux control coefficient.</p>","PeriodicalId":8948,"journal":{"name":"Biomedica biochimica acta","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1991-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intramitochondrial fatty acid activation enhances control strength of adenine nucleotide translocase.\",\"authors\":\"P Schönfeld,&nbsp;R Bohnensack\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In incubations with isolated rat liver mitochondria we studied the fuel properties of octanoate as medium-chain fatty acid and respiratory substrate and the extent of control exerted by adenine nucleotide translocase on mitochondrial respiration. While, compared with pyruvate, octanoate improved the hydrogen supply in the active state to be seen from a high reduction of the mitochondrial NAD(P) system and an increased delta psi, it also decreased the efficiency of energy transduction indicated by a low ADP/O ratio. Based on measurements of the dependence of respiration on the extramitochondrial ATP/ADP ratio, we conclude that a switch-over from pyruvate to fatty acid oxidation does not change the kinetic parameters which make respiration respond to the ATP/ADP ratio. It is shown that the decrease of the exchangeable intramitochondrial adenine nucleotide pool due to the activation of octanoate results in a decrease of the activity of the adenine nucleotide translocase and an increase of its flux control coefficient.</p>\",\"PeriodicalId\":8948,\"journal\":{\"name\":\"Biomedica biochimica acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedica biochimica acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedica biochimica acta","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在离体大鼠肝脏线粒体孵育中,我们研究了辛酸盐作为中链脂肪酸和呼吸底物的燃料特性,以及腺嘌呤核苷酸转位酶对线粒体呼吸的控制程度。与丙酮酸相比,辛酸改善了活性状态下的氢供应,这可以从线粒体NAD(P)系统的高还原和δ psi的增加中看出,但辛酸也降低了能量转导的效率,这表明ADP/O比较低。基于呼吸对线粒体外ATP/ADP比率的依赖性的测量,我们得出结论,从丙酮酸到脂肪酸氧化的切换不会改变使呼吸响应ATP/ADP比率的动力学参数。结果表明,辛酸活化导致线粒体内可交换腺嘌呤核苷酸池减少,导致腺嘌呤核苷酸转位酶活性降低,其通量控制系数升高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intramitochondrial fatty acid activation enhances control strength of adenine nucleotide translocase.

In incubations with isolated rat liver mitochondria we studied the fuel properties of octanoate as medium-chain fatty acid and respiratory substrate and the extent of control exerted by adenine nucleotide translocase on mitochondrial respiration. While, compared with pyruvate, octanoate improved the hydrogen supply in the active state to be seen from a high reduction of the mitochondrial NAD(P) system and an increased delta psi, it also decreased the efficiency of energy transduction indicated by a low ADP/O ratio. Based on measurements of the dependence of respiration on the extramitochondrial ATP/ADP ratio, we conclude that a switch-over from pyruvate to fatty acid oxidation does not change the kinetic parameters which make respiration respond to the ATP/ADP ratio. It is shown that the decrease of the exchangeable intramitochondrial adenine nucleotide pool due to the activation of octanoate results in a decrease of the activity of the adenine nucleotide translocase and an increase of its flux control coefficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信