关于二元幂等函数的三元集上一元群的中心化

Hajime Machida, I. Rosenberg
{"title":"关于二元幂等函数的三元集上一元群的中心化","authors":"Hajime Machida, I. Rosenberg","doi":"10.1109/ISMVL.2016.32","DOIUrl":null,"url":null,"abstract":"A centralizing monoid M is a set of unary functions which commute with all members of some set F of multi-variable functions. The set F is called a witness of M. In this paper, we study centralizing monoids on a three-element set which have sets of binary idempotent functions as their witnesses. It is shown that the number of such centralizing monoids is 67.","PeriodicalId":246194,"journal":{"name":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Centralizing Monoids on a Three-Element Set Related to Binary Idempotent Functions\",\"authors\":\"Hajime Machida, I. Rosenberg\",\"doi\":\"10.1109/ISMVL.2016.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A centralizing monoid M is a set of unary functions which commute with all members of some set F of multi-variable functions. The set F is called a witness of M. In this paper, we study centralizing monoids on a three-element set which have sets of binary idempotent functions as their witnesses. It is shown that the number of such centralizing monoids is 67.\",\"PeriodicalId\":246194,\"journal\":{\"name\":\"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2016.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2016.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

一个集中一元群M是一个一元函数的集合,它与多变量函数的集合F中的所有成员交换。本文研究了以二元幂等函数集为见证者的三元集上的一元群的中心化问题。结果表明,这类集中一元群的数目为67个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Centralizing Monoids on a Three-Element Set Related to Binary Idempotent Functions
A centralizing monoid M is a set of unary functions which commute with all members of some set F of multi-variable functions. The set F is called a witness of M. In this paper, we study centralizing monoids on a three-element set which have sets of binary idempotent functions as their witnesses. It is shown that the number of such centralizing monoids is 67.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信