{"title":"延迟抢占的自适应混合临界调度","authors":"A. Burns, Robert I. Davis","doi":"10.1109/RTSS.2014.12","DOIUrl":null,"url":null,"abstract":"Adaptive Mixed Criticality (AMC) scheduling has previously been shown to be the most effective fixed priority approach for scheduling mixed criticality systems, while the idea of final non-preemptive regions has been shown to improve the schedulability of systems with a single criticality level. In this paper, we combine AMC with the concept of non-preemptive regions by making the final part of each task's execution at each criticality level non-preemptive. We derive schedulability analysis for this approach, and provide an effective algorithm for choosing each task's priority and the durations of its non-preemptive regions. Evaluations illustrate the benefits of this approach in terms of increased schedulability.","PeriodicalId":353167,"journal":{"name":"2014 IEEE Real-Time Systems Symposium","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Adaptive Mixed Criticality Scheduling with Deferred Preemption\",\"authors\":\"A. Burns, Robert I. Davis\",\"doi\":\"10.1109/RTSS.2014.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adaptive Mixed Criticality (AMC) scheduling has previously been shown to be the most effective fixed priority approach for scheduling mixed criticality systems, while the idea of final non-preemptive regions has been shown to improve the schedulability of systems with a single criticality level. In this paper, we combine AMC with the concept of non-preemptive regions by making the final part of each task's execution at each criticality level non-preemptive. We derive schedulability analysis for this approach, and provide an effective algorithm for choosing each task's priority and the durations of its non-preemptive regions. Evaluations illustrate the benefits of this approach in terms of increased schedulability.\",\"PeriodicalId\":353167,\"journal\":{\"name\":\"2014 IEEE Real-Time Systems Symposium\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Real-Time Systems Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSS.2014.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2014.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Mixed Criticality Scheduling with Deferred Preemption
Adaptive Mixed Criticality (AMC) scheduling has previously been shown to be the most effective fixed priority approach for scheduling mixed criticality systems, while the idea of final non-preemptive regions has been shown to improve the schedulability of systems with a single criticality level. In this paper, we combine AMC with the concept of non-preemptive regions by making the final part of each task's execution at each criticality level non-preemptive. We derive schedulability analysis for this approach, and provide an effective algorithm for choosing each task's priority and the durations of its non-preemptive regions. Evaluations illustrate the benefits of this approach in terms of increased schedulability.