Bohan Yang, Vladimir Rožić, N. Mentens, W. Dehaene, I. Verbauwhede
{"title":"TOTAL:使用轻量级硬件进行攻击检测的TRNG实时测试","authors":"Bohan Yang, Vladimir Rožić, N. Mentens, W. Dehaene, I. Verbauwhede","doi":"10.3850/9783981537079_0284","DOIUrl":null,"url":null,"abstract":"We present a design methodology for embedded tests of entropy sources. These tests are necessary to detect attacks and failures of true random number generators. The central idea of this work is to use an empirical design methodology consisting of two phases: collecting the data under attack and finding a useful statistical feature. In this work we focus on statistical features that are implementable in lightweight hardware. This is the first paper to address the design of on-the-fly tests based on the attack effects. The presented design methodology is illustrated with 2 examples: an elementary ring-oscillator based TRNG and a carry-chain based TRNG. The effectiveness of the tests was confirmed on FPGA prototypes.","PeriodicalId":311352,"journal":{"name":"2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"10 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"TOTAL: TRNG on-the-fly testing for attack detection using Lightweight hardware\",\"authors\":\"Bohan Yang, Vladimir Rožić, N. Mentens, W. Dehaene, I. Verbauwhede\",\"doi\":\"10.3850/9783981537079_0284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a design methodology for embedded tests of entropy sources. These tests are necessary to detect attacks and failures of true random number generators. The central idea of this work is to use an empirical design methodology consisting of two phases: collecting the data under attack and finding a useful statistical feature. In this work we focus on statistical features that are implementable in lightweight hardware. This is the first paper to address the design of on-the-fly tests based on the attack effects. The presented design methodology is illustrated with 2 examples: an elementary ring-oscillator based TRNG and a carry-chain based TRNG. The effectiveness of the tests was confirmed on FPGA prototypes.\",\"PeriodicalId\":311352,\"journal\":{\"name\":\"2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"10 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3850/9783981537079_0284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3850/9783981537079_0284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
TOTAL: TRNG on-the-fly testing for attack detection using Lightweight hardware
We present a design methodology for embedded tests of entropy sources. These tests are necessary to detect attacks and failures of true random number generators. The central idea of this work is to use an empirical design methodology consisting of two phases: collecting the data under attack and finding a useful statistical feature. In this work we focus on statistical features that are implementable in lightweight hardware. This is the first paper to address the design of on-the-fly tests based on the attack effects. The presented design methodology is illustrated with 2 examples: an elementary ring-oscillator based TRNG and a carry-chain based TRNG. The effectiveness of the tests was confirmed on FPGA prototypes.