gpgpu上的并行一维和二维fft

M. Fallahpour, Chang-Hong Lin, Ming-Bo Lin, Chin-Yu Chang
{"title":"gpgpu上的并行一维和二维fft","authors":"M. Fallahpour, Chang-Hong Lin, Ming-Bo Lin, Chin-Yu Chang","doi":"10.1109/ICASID.2012.6325347","DOIUrl":null,"url":null,"abstract":"This paper presents a method to map and implement the 1-D FFT on a GPGPU and extends the method to the 2-D FFT. Two approaches are used to maximize the performance. One is to localize data inside the caches of the GPGPU and the other is to properly assign threads and blocks to reach higher performance. The results show that our implementation is 3.62 times faster to perform 32M-point 1-D FFT and 4.89 times faster to perform 2-D FFT with 16k × 8k points, as compared to the FFTW on the 16-core MPI platform.","PeriodicalId":408223,"journal":{"name":"Anti-counterfeiting, Security, and Identification","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parallel one- and two-dimensional FFTs on GPGPUs\",\"authors\":\"M. Fallahpour, Chang-Hong Lin, Ming-Bo Lin, Chin-Yu Chang\",\"doi\":\"10.1109/ICASID.2012.6325347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to map and implement the 1-D FFT on a GPGPU and extends the method to the 2-D FFT. Two approaches are used to maximize the performance. One is to localize data inside the caches of the GPGPU and the other is to properly assign threads and blocks to reach higher performance. The results show that our implementation is 3.62 times faster to perform 32M-point 1-D FFT and 4.89 times faster to perform 2-D FFT with 16k × 8k points, as compared to the FFTW on the 16-core MPI platform.\",\"PeriodicalId\":408223,\"journal\":{\"name\":\"Anti-counterfeiting, Security, and Identification\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-counterfeiting, Security, and Identification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASID.2012.6325347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-counterfeiting, Security, and Identification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASID.2012.6325347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种在GPGPU上映射和实现一维FFT的方法,并将该方法扩展到二维FFT。有两种方法可以使性能最大化。一种是在GPGPU的缓存中本地化数据,另一种是正确分配线程和块以达到更高的性能。结果表明,与16核MPI平台上的FFTW相比,我们的实现在执行32m点1-D FFT时速度快3.62倍,在执行16k × 8k点2-D FFT时速度快4.89倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel one- and two-dimensional FFTs on GPGPUs
This paper presents a method to map and implement the 1-D FFT on a GPGPU and extends the method to the 2-D FFT. Two approaches are used to maximize the performance. One is to localize data inside the caches of the GPGPU and the other is to properly assign threads and blocks to reach higher performance. The results show that our implementation is 3.62 times faster to perform 32M-point 1-D FFT and 4.89 times faster to perform 2-D FFT with 16k × 8k points, as compared to the FFTW on the 16-core MPI platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信