围绕一个立方面体一致的四方程的约化I:加性情况

N. Joshi, N. Nakazono
{"title":"围绕一个立方面体一致的四方程的约化I:加性情况","authors":"N. Joshi, N. Nakazono","doi":"10.1090/bproc/96","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a reduction of a new system of partial difference equations, which was obtained in our previous paper (Joshi and Nakazono, arXiv:1906.06650) and shown to be consistent around a cuboctahedron. We show that this system reduces to $A_2^{(1)\\ast}$-type discrete Painleve equations by considering a periodic reduction of a three-dimensional lattice constructed from overlapping cuboctahedra.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reduction of quad-equations consistent around a cuboctahedron I: Additive case\",\"authors\":\"N. Joshi, N. Nakazono\",\"doi\":\"10.1090/bproc/96\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a reduction of a new system of partial difference equations, which was obtained in our previous paper (Joshi and Nakazono, arXiv:1906.06650) and shown to be consistent around a cuboctahedron. We show that this system reduces to $A_2^{(1)\\\\ast}$-type discrete Painleve equations by considering a periodic reduction of a three-dimensional lattice constructed from overlapping cuboctahedra.\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/96\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/96","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们考虑了在我们之前的论文(Joshi和Nakazono, arXiv:1906.06650)中得到的一个新的偏差分方程系统的约简,并证明了它在立方体周围是一致的。通过考虑由重叠的三面体构成的三维晶格的周期约简,我们证明了该系统约简为$A_2^{(1)\ast}$型离散Painleve方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduction of quad-equations consistent around a cuboctahedron I: Additive case
In this paper, we consider a reduction of a new system of partial difference equations, which was obtained in our previous paper (Joshi and Nakazono, arXiv:1906.06650) and shown to be consistent around a cuboctahedron. We show that this system reduces to $A_2^{(1)\ast}$-type discrete Painleve equations by considering a periodic reduction of a three-dimensional lattice constructed from overlapping cuboctahedra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信