{"title":"半导体材料中深层缺陷的低频噪声温度识别技术","authors":"J. Ćwirko, C. Przybysz, R. Cwirko, P. Kamiński","doi":"10.1117/12.425433","DOIUrl":null,"url":null,"abstract":"The technique of low frequency noise vs temperature is a powerful tool for study of deep level impurities in semiconductors materials. The physical parameters of the deep level defects are possible to identify from noise data. Measurement system to measure low noise spectra in frequency range from 0.01 kHz at temperature from 77K to 350K has been described.","PeriodicalId":365405,"journal":{"name":"International Conference on Solid State Crystals","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technique of low-frequency noise versus temperature for identification of deep-level defects in semiconductor materials\",\"authors\":\"J. Ćwirko, C. Przybysz, R. Cwirko, P. Kamiński\",\"doi\":\"10.1117/12.425433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The technique of low frequency noise vs temperature is a powerful tool for study of deep level impurities in semiconductors materials. The physical parameters of the deep level defects are possible to identify from noise data. Measurement system to measure low noise spectra in frequency range from 0.01 kHz at temperature from 77K to 350K has been described.\",\"PeriodicalId\":365405,\"journal\":{\"name\":\"International Conference on Solid State Crystals\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Solid State Crystals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.425433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Solid State Crystals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.425433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Technique of low-frequency noise versus temperature for identification of deep-level defects in semiconductor materials
The technique of low frequency noise vs temperature is a powerful tool for study of deep level impurities in semiconductors materials. The physical parameters of the deep level defects are possible to identify from noise data. Measurement system to measure low noise spectra in frequency range from 0.01 kHz at temperature from 77K to 350K has been described.