{"title":"周期函数的基于映射的不确定性关系","authors":"M. J. Bastiaans, M. Alonso","doi":"10.1109/ISSPIT.2003.1341198","DOIUrl":null,"url":null,"abstract":"Based on five different mappings of a function on a circle (i.e. a periodic function) to a function on a line or a line segment (i.e. a non-periodic function), measures for the width of a periodic function (expressed in terms of centered second-order moments) are studied, and the associated uncertainty relations are derived, using a generalized version of the Cauchy-Schwarz inequality.","PeriodicalId":332887,"journal":{"name":"Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology (IEEE Cat. No.03EX795)","volume":"95 33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping-based uncertainty relations for periodic functions\",\"authors\":\"M. J. Bastiaans, M. Alonso\",\"doi\":\"10.1109/ISSPIT.2003.1341198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on five different mappings of a function on a circle (i.e. a periodic function) to a function on a line or a line segment (i.e. a non-periodic function), measures for the width of a periodic function (expressed in terms of centered second-order moments) are studied, and the associated uncertainty relations are derived, using a generalized version of the Cauchy-Schwarz inequality.\",\"PeriodicalId\":332887,\"journal\":{\"name\":\"Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology (IEEE Cat. No.03EX795)\",\"volume\":\"95 33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology (IEEE Cat. No.03EX795)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2003.1341198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology (IEEE Cat. No.03EX795)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2003.1341198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mapping-based uncertainty relations for periodic functions
Based on five different mappings of a function on a circle (i.e. a periodic function) to a function on a line or a line segment (i.e. a non-periodic function), measures for the width of a periodic function (expressed in terms of centered second-order moments) are studied, and the associated uncertainty relations are derived, using a generalized version of the Cauchy-Schwarz inequality.