关于修正判别分析

Marcin Owczarczuk
{"title":"关于修正判别分析","authors":"Marcin Owczarczuk","doi":"10.2139/ssrn.1015527","DOIUrl":null,"url":null,"abstract":"Discriminant analysis is mostly used to predict the value of a discrete dependent variable of an observation on the basis of a set of predictors. The commonly used criterion of the predictive power is the fraction of incorrectly predicted cases in the sample. In this article we construct a model for a modified discriminant problem. Namely to find a subpopulation of a given size having the highest percentage of observations of a chosen class. Our model maximizes the following criterion of the predictive power: the fraction of observations from chosen class in the found subpopulation.","PeriodicalId":165362,"journal":{"name":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Modified Discriminant Analysis\",\"authors\":\"Marcin Owczarczuk\",\"doi\":\"10.2139/ssrn.1015527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discriminant analysis is mostly used to predict the value of a discrete dependent variable of an observation on the basis of a set of predictors. The commonly used criterion of the predictive power is the fraction of incorrectly predicted cases in the sample. In this article we construct a model for a modified discriminant problem. Namely to find a subpopulation of a given size having the highest percentage of observations of a chosen class. Our model maximizes the following criterion of the predictive power: the fraction of observations from chosen class in the found subpopulation.\",\"PeriodicalId\":165362,\"journal\":{\"name\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1015527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Discrete Regression & Qualitative Choice Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1015527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

判别分析主要用于在一组预测因子的基础上预测观测值的离散因变量值。预测能力的常用标准是样本中不正确预测案例的比例。本文构造了一个修正判别问题的模型。也就是说,在给定的大小中,找到对所选类别具有最高观察百分比的亚种群。我们的模型最大化了预测能力的以下标准:在发现的亚群中,来自选定类别的观察值的比例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Modified Discriminant Analysis
Discriminant analysis is mostly used to predict the value of a discrete dependent variable of an observation on the basis of a set of predictors. The commonly used criterion of the predictive power is the fraction of incorrectly predicted cases in the sample. In this article we construct a model for a modified discriminant problem. Namely to find a subpopulation of a given size having the highest percentage of observations of a chosen class. Our model maximizes the following criterion of the predictive power: the fraction of observations from chosen class in the found subpopulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信