使用深度学习来定位学生代码提交中的错误

Shion Fujimori, Mohamed Harmanani, Owais Siddiqui, Lisa Zhang
{"title":"使用深度学习来定位学生代码提交中的错误","authors":"Shion Fujimori, Mohamed Harmanani, Owais Siddiqui, Lisa Zhang","doi":"10.1145/3478432.3499048","DOIUrl":null,"url":null,"abstract":"We explore RNN and CodeBERT deep learning models that highlight errors in student submissions to Python coding problems. We find that a standard automatic metric like AUC does not correspond well to human evaluation, and that the scale of the benefits of transfer learning and pre-training are only seen when using human evaluation.","PeriodicalId":113773,"journal":{"name":"Proceedings of the 53rd ACM Technical Symposium on Computer Science Education V. 2","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using Deep Learning to Localize Errors in Student Code Submissions\",\"authors\":\"Shion Fujimori, Mohamed Harmanani, Owais Siddiqui, Lisa Zhang\",\"doi\":\"10.1145/3478432.3499048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore RNN and CodeBERT deep learning models that highlight errors in student submissions to Python coding problems. We find that a standard automatic metric like AUC does not correspond well to human evaluation, and that the scale of the benefits of transfer learning and pre-training are only seen when using human evaluation.\",\"PeriodicalId\":113773,\"journal\":{\"name\":\"Proceedings of the 53rd ACM Technical Symposium on Computer Science Education V. 2\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 53rd ACM Technical Symposium on Computer Science Education V. 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3478432.3499048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 53rd ACM Technical Symposium on Computer Science Education V. 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3478432.3499048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们探索了RNN和CodeBERT深度学习模型,这些模型突出了学生提交的Python编码问题中的错误。我们发现,像AUC这样的标准自动度量并不能很好地与人类的评估相对应,并且只有在使用人类评估时才能看到迁移学习和预训练的收益规模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Deep Learning to Localize Errors in Student Code Submissions
We explore RNN and CodeBERT deep learning models that highlight errors in student submissions to Python coding problems. We find that a standard automatic metric like AUC does not correspond well to human evaluation, and that the scale of the benefits of transfer learning and pre-training are only seen when using human evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信