基于线性约束最小二乘法的噪声图像融合神经动力学方法

Jihui Yu, Chuandong Li
{"title":"基于线性约束最小二乘法的噪声图像融合神经动力学方法","authors":"Jihui Yu, Chuandong Li","doi":"10.1109/AIAIM.2019.8632778","DOIUrl":null,"url":null,"abstract":"In this paper, a neurodynamic approach is proposed to denoise Gaussian noise through fusing noisy images. A constrained optimization problem based on a linearly constrained least square (LCLS) method is introduced for image fusion in RGB channels. Moreover, a neurodynamic model is introduced to solve the optimization problem in three channels respectively. Experimental results substantiate the efficacy of the proposed approach.","PeriodicalId":179068,"journal":{"name":"2019 China-Qatar International Workshop on Artificial Intelligence and Applications to Intelligent Manufacturing (AIAIM)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Neurodynamic Approach to Noisy Image Fusion Based on a Linear Constrained Least Square Method\",\"authors\":\"Jihui Yu, Chuandong Li\",\"doi\":\"10.1109/AIAIM.2019.8632778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a neurodynamic approach is proposed to denoise Gaussian noise through fusing noisy images. A constrained optimization problem based on a linearly constrained least square (LCLS) method is introduced for image fusion in RGB channels. Moreover, a neurodynamic model is introduced to solve the optimization problem in three channels respectively. Experimental results substantiate the efficacy of the proposed approach.\",\"PeriodicalId\":179068,\"journal\":{\"name\":\"2019 China-Qatar International Workshop on Artificial Intelligence and Applications to Intelligent Manufacturing (AIAIM)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 China-Qatar International Workshop on Artificial Intelligence and Applications to Intelligent Manufacturing (AIAIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIAIM.2019.8632778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 China-Qatar International Workshop on Artificial Intelligence and Applications to Intelligent Manufacturing (AIAIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIAIM.2019.8632778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种神经动力学方法,通过融合噪声图像来去除高斯噪声。提出了一种基于线性约束最小二乘(LCLS)方法的RGB通道图像融合约束优化问题。此外,还引入了神经动力学模型,分别求解了三个通道的优化问题。实验结果证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Neurodynamic Approach to Noisy Image Fusion Based on a Linear Constrained Least Square Method
In this paper, a neurodynamic approach is proposed to denoise Gaussian noise through fusing noisy images. A constrained optimization problem based on a linearly constrained least square (LCLS) method is introduced for image fusion in RGB channels. Moreover, a neurodynamic model is introduced to solve the optimization problem in three channels respectively. Experimental results substantiate the efficacy of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信