{"title":"嵌入式系统鲁棒单目视觉-惯性深度补全","authors":"Nate Merrill, Patrick Geneva, G. Huang","doi":"10.1109/ICRA48506.2021.9561174","DOIUrl":null,"url":null,"abstract":"In this work we augment our prior state-of-the-art visual-inertial odometry (VIO) system, OpenVINS [1], to produce accurate dense depth by filling in sparse depth estimates (depth completion) from VIO with image guidance – all while focusing on enabling real-time performance of the full VIO+depth system on embedded devices. We show that noisy depth values with varying sparsity produced from a VIO system can not only hurt the accuracy of predicted dense depth maps, but also make them considerably worse than those from an image-only depth network with the same underlying architecture. We investigate this sensitivity on both an outdoor simulated and indoor handheld RGB-D dataset, and present simple yet effective solutions to address these shortcomings of depth completion networks. The key changes to our state-of-the-art VIO system required to provide high quality sparse depths for the network while still enabling efficient state estimation on embedded devices are discussed. A comprehensive computational analysis is performed over different embedded devices to demonstrate the efficiency and accuracy of the proposed VIO depth completion system.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Robust Monocular Visual-Inertial Depth Completion for Embedded Systems\",\"authors\":\"Nate Merrill, Patrick Geneva, G. Huang\",\"doi\":\"10.1109/ICRA48506.2021.9561174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we augment our prior state-of-the-art visual-inertial odometry (VIO) system, OpenVINS [1], to produce accurate dense depth by filling in sparse depth estimates (depth completion) from VIO with image guidance – all while focusing on enabling real-time performance of the full VIO+depth system on embedded devices. We show that noisy depth values with varying sparsity produced from a VIO system can not only hurt the accuracy of predicted dense depth maps, but also make them considerably worse than those from an image-only depth network with the same underlying architecture. We investigate this sensitivity on both an outdoor simulated and indoor handheld RGB-D dataset, and present simple yet effective solutions to address these shortcomings of depth completion networks. The key changes to our state-of-the-art VIO system required to provide high quality sparse depths for the network while still enabling efficient state estimation on embedded devices are discussed. A comprehensive computational analysis is performed over different embedded devices to demonstrate the efficiency and accuracy of the proposed VIO depth completion system.\",\"PeriodicalId\":108312,\"journal\":{\"name\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48506.2021.9561174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Monocular Visual-Inertial Depth Completion for Embedded Systems
In this work we augment our prior state-of-the-art visual-inertial odometry (VIO) system, OpenVINS [1], to produce accurate dense depth by filling in sparse depth estimates (depth completion) from VIO with image guidance – all while focusing on enabling real-time performance of the full VIO+depth system on embedded devices. We show that noisy depth values with varying sparsity produced from a VIO system can not only hurt the accuracy of predicted dense depth maps, but also make them considerably worse than those from an image-only depth network with the same underlying architecture. We investigate this sensitivity on both an outdoor simulated and indoor handheld RGB-D dataset, and present simple yet effective solutions to address these shortcomings of depth completion networks. The key changes to our state-of-the-art VIO system required to provide high quality sparse depths for the network while still enabling efficient state estimation on embedded devices are discussed. A comprehensive computational analysis is performed over different embedded devices to demonstrate the efficiency and accuracy of the proposed VIO depth completion system.