嵌入式系统鲁棒单目视觉-惯性深度补全

Nate Merrill, Patrick Geneva, G. Huang
{"title":"嵌入式系统鲁棒单目视觉-惯性深度补全","authors":"Nate Merrill, Patrick Geneva, G. Huang","doi":"10.1109/ICRA48506.2021.9561174","DOIUrl":null,"url":null,"abstract":"In this work we augment our prior state-of-the-art visual-inertial odometry (VIO) system, OpenVINS [1], to produce accurate dense depth by filling in sparse depth estimates (depth completion) from VIO with image guidance – all while focusing on enabling real-time performance of the full VIO+depth system on embedded devices. We show that noisy depth values with varying sparsity produced from a VIO system can not only hurt the accuracy of predicted dense depth maps, but also make them considerably worse than those from an image-only depth network with the same underlying architecture. We investigate this sensitivity on both an outdoor simulated and indoor handheld RGB-D dataset, and present simple yet effective solutions to address these shortcomings of depth completion networks. The key changes to our state-of-the-art VIO system required to provide high quality sparse depths for the network while still enabling efficient state estimation on embedded devices are discussed. A comprehensive computational analysis is performed over different embedded devices to demonstrate the efficiency and accuracy of the proposed VIO depth completion system.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Robust Monocular Visual-Inertial Depth Completion for Embedded Systems\",\"authors\":\"Nate Merrill, Patrick Geneva, G. Huang\",\"doi\":\"10.1109/ICRA48506.2021.9561174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we augment our prior state-of-the-art visual-inertial odometry (VIO) system, OpenVINS [1], to produce accurate dense depth by filling in sparse depth estimates (depth completion) from VIO with image guidance – all while focusing on enabling real-time performance of the full VIO+depth system on embedded devices. We show that noisy depth values with varying sparsity produced from a VIO system can not only hurt the accuracy of predicted dense depth maps, but also make them considerably worse than those from an image-only depth network with the same underlying architecture. We investigate this sensitivity on both an outdoor simulated and indoor handheld RGB-D dataset, and present simple yet effective solutions to address these shortcomings of depth completion networks. The key changes to our state-of-the-art VIO system required to provide high quality sparse depths for the network while still enabling efficient state estimation on embedded devices are discussed. A comprehensive computational analysis is performed over different embedded devices to demonstrate the efficiency and accuracy of the proposed VIO depth completion system.\",\"PeriodicalId\":108312,\"journal\":{\"name\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48506.2021.9561174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9561174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在这项工作中,我们增强了我们之前最先进的视觉惯性里程计(VIO)系统OpenVINS[1],通过在图像引导下填充VIO的稀疏深度估计(深度完成)来产生准确的密集深度,同时专注于在嵌入式设备上实现完整VIO+深度系统的实时性能。我们表明,VIO系统产生的具有不同稀疏度的噪声深度值不仅会损害预测密集深度图的准确性,而且还会使它们比具有相同底层架构的仅图像深度网络的深度值差得多。我们在室外模拟和室内手持式RGB-D数据集上研究了这种敏感性,并提出了简单而有效的解决方案来解决深度完井网络的这些缺点。我们最先进的VIO系统需要为网络提供高质量的稀疏深度,同时仍然能够对嵌入式设备进行有效的状态估计。在不同的嵌入式设备上进行了全面的计算分析,以证明所提出的VIO深度完井系统的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Monocular Visual-Inertial Depth Completion for Embedded Systems
In this work we augment our prior state-of-the-art visual-inertial odometry (VIO) system, OpenVINS [1], to produce accurate dense depth by filling in sparse depth estimates (depth completion) from VIO with image guidance – all while focusing on enabling real-time performance of the full VIO+depth system on embedded devices. We show that noisy depth values with varying sparsity produced from a VIO system can not only hurt the accuracy of predicted dense depth maps, but also make them considerably worse than those from an image-only depth network with the same underlying architecture. We investigate this sensitivity on both an outdoor simulated and indoor handheld RGB-D dataset, and present simple yet effective solutions to address these shortcomings of depth completion networks. The key changes to our state-of-the-art VIO system required to provide high quality sparse depths for the network while still enabling efficient state estimation on embedded devices are discussed. A comprehensive computational analysis is performed over different embedded devices to demonstrate the efficiency and accuracy of the proposed VIO depth completion system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信