多核可扩展并行事件驱动HDL仿真

T. B. Ahmad, Namdo Kim, Byeong Min, A. Kalia, M. Ciesielski, Seiyang Yang
{"title":"多核可扩展并行事件驱动HDL仿真","authors":"T. B. Ahmad, Namdo Kim, Byeong Min, A. Kalia, M. Ciesielski, Seiyang Yang","doi":"10.1109/SMACD.2012.6339456","DOIUrl":null,"url":null,"abstract":"Multi-core processors have become common in current computing platforms. Today, most of multi-core workstations and PCs have adopted NUMA (Non-Uniform Memory Access) advanced memory architecture for high performance and scalability. In response, EDA (Electronic Design Automation) community has applied significant effort to parallelize many EDA algorithms with some success. However, event-driven simulation of designs modeled in HDL (Hardware Description Language) has not achieved meaningful progress so far. This paper proposes a highly scalable parallel, event-driven HDL simulation method, based upon accurate stimulus prediction. The paper presents the basic idea of this approach and discusses why this new method is ideally positioned for achieving high parallelism with NUMA architecture.","PeriodicalId":181205,"journal":{"name":"2012 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Scalable parallel event-driven HDL simulation for multi-cores\",\"authors\":\"T. B. Ahmad, Namdo Kim, Byeong Min, A. Kalia, M. Ciesielski, Seiyang Yang\",\"doi\":\"10.1109/SMACD.2012.6339456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-core processors have become common in current computing platforms. Today, most of multi-core workstations and PCs have adopted NUMA (Non-Uniform Memory Access) advanced memory architecture for high performance and scalability. In response, EDA (Electronic Design Automation) community has applied significant effort to parallelize many EDA algorithms with some success. However, event-driven simulation of designs modeled in HDL (Hardware Description Language) has not achieved meaningful progress so far. This paper proposes a highly scalable parallel, event-driven HDL simulation method, based upon accurate stimulus prediction. The paper presents the basic idea of this approach and discusses why this new method is ideally positioned for achieving high parallelism with NUMA architecture.\",\"PeriodicalId\":181205,\"journal\":{\"name\":\"2012 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMACD.2012.6339456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMACD.2012.6339456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在当前的计算平台中,多核处理器已经变得非常普遍。今天,大多数多核工作站和pc都采用了NUMA(非统一内存访问)高级内存架构,以获得高性能和可伸缩性。作为回应,EDA(电子设计自动化)社区已经投入了大量的努力来并行化许多EDA算法,并取得了一些成功。然而,以HDL(硬件描述语言)建模的事件驱动设计仿真迄今尚未取得有意义的进展。本文提出了一种基于精确刺激预测的高度可扩展并行、事件驱动的HDL仿真方法。本文介绍了这种方法的基本思想,并讨论了为什么这种新方法是实现NUMA体系结构的高并行性的理想定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable parallel event-driven HDL simulation for multi-cores
Multi-core processors have become common in current computing platforms. Today, most of multi-core workstations and PCs have adopted NUMA (Non-Uniform Memory Access) advanced memory architecture for high performance and scalability. In response, EDA (Electronic Design Automation) community has applied significant effort to parallelize many EDA algorithms with some success. However, event-driven simulation of designs modeled in HDL (Hardware Description Language) has not achieved meaningful progress so far. This paper proposes a highly scalable parallel, event-driven HDL simulation method, based upon accurate stimulus prediction. The paper presents the basic idea of this approach and discusses why this new method is ideally positioned for achieving high parallelism with NUMA architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信