基于神经网络和滑模控制的机器人鲁棒自适应控制

Nguyen Thai-Huu, Minh Phan-Xuan, Son Hoang-Minh, Dan Nguyen-Cong, Quyet Ho-Gia
{"title":"基于神经网络和滑模控制的机器人鲁棒自适应控制","authors":"Nguyen Thai-Huu, Minh Phan-Xuan, Son Hoang-Minh, Dan Nguyen-Cong, Quyet Ho-Gia","doi":"10.1109/ICCAIS.2013.6720576","DOIUrl":null,"url":null,"abstract":"This paper presents a method for designing robust adaptive control of strict-feedback systems with function uncertainties and disturbances. A backstepping-based neural network controller is connected in parallel with a sliding mode controller to utilize best advantages of two approaches. The neural network is used to approximate the uncertainty functions, where the weighting coefficients of the neural network are trained online. The robust adaptive control law is designed based on control Lyapunov function by using backstepping techniques and sliding mode control, thus global asymptotic stability is guaranteed for the case of ideal implementation of the neural network. The proposed controller is applied to an n-degrees-of-freedom robot. The simulation results demonstrate the effectiveness of the proposed method.","PeriodicalId":347974,"journal":{"name":"2013 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust adaptive control of robots using neural network and sliding mode control\",\"authors\":\"Nguyen Thai-Huu, Minh Phan-Xuan, Son Hoang-Minh, Dan Nguyen-Cong, Quyet Ho-Gia\",\"doi\":\"10.1109/ICCAIS.2013.6720576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for designing robust adaptive control of strict-feedback systems with function uncertainties and disturbances. A backstepping-based neural network controller is connected in parallel with a sliding mode controller to utilize best advantages of two approaches. The neural network is used to approximate the uncertainty functions, where the weighting coefficients of the neural network are trained online. The robust adaptive control law is designed based on control Lyapunov function by using backstepping techniques and sliding mode control, thus global asymptotic stability is guaranteed for the case of ideal implementation of the neural network. The proposed controller is applied to an n-degrees-of-freedom robot. The simulation results demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":347974,\"journal\":{\"name\":\"2013 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS.2013.6720576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2013.6720576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种具有函数不确定性和扰动的严格反馈系统的鲁棒自适应控制设计方法。为了充分利用两种方法的优点,将基于后退的神经网络控制器与滑模控制器并联。利用神经网络逼近不确定性函数,在线训练神经网络的权重系数。基于控制Lyapunov函数,利用反步技术和滑模控制设计了鲁棒自适应控制律,保证了神经网络在理想实现情况下的全局渐近稳定性。将所提出的控制器应用于一个n自由度机器人。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust adaptive control of robots using neural network and sliding mode control
This paper presents a method for designing robust adaptive control of strict-feedback systems with function uncertainties and disturbances. A backstepping-based neural network controller is connected in parallel with a sliding mode controller to utilize best advantages of two approaches. The neural network is used to approximate the uncertainty functions, where the weighting coefficients of the neural network are trained online. The robust adaptive control law is designed based on control Lyapunov function by using backstepping techniques and sliding mode control, thus global asymptotic stability is guaranteed for the case of ideal implementation of the neural network. The proposed controller is applied to an n-degrees-of-freedom robot. The simulation results demonstrate the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信