基于面部特征的实时参与检测

Sara Marques-Villarroya, Juan José Gamboa-Montero, A. Bernardino, Marcos Maroto-Gómez, J. C. Castillo, M. Salichs
{"title":"基于面部特征的实时参与检测","authors":"Sara Marques-Villarroya, Juan José Gamboa-Montero, A. Bernardino, Marcos Maroto-Gómez, J. C. Castillo, M. Salichs","doi":"10.1109/ICDL53763.2022.9962228","DOIUrl":null,"url":null,"abstract":"Nowadays, engagement detection plays an essential role in e-learning education and robotics. In the field of human-agent interaction, it is of great interest to know the attitude of the human peer towards the interaction so that the agent can react accordingly. The goal of this paper is to develop an automatic real-time engagement recognition system using a combination of non-verbal features (gaze direction, head position, facial expression and distance between users) extracted using computer vision techniques. Our system uses a machine learning model based on Random Forest and achieves 86% accuracy, improving the results of the state-of-the-art methods by 22.2% in engagement level detection accuracy on the Daisee dataset. Furthermore, using an RGB camera, the system can detect the level of user engagement in real-time and classify it into four levels of intensity.","PeriodicalId":274171,"journal":{"name":"2022 IEEE International Conference on Development and Learning (ICDL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time Engagement Detection from Facial Features\",\"authors\":\"Sara Marques-Villarroya, Juan José Gamboa-Montero, A. Bernardino, Marcos Maroto-Gómez, J. C. Castillo, M. Salichs\",\"doi\":\"10.1109/ICDL53763.2022.9962228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, engagement detection plays an essential role in e-learning education and robotics. In the field of human-agent interaction, it is of great interest to know the attitude of the human peer towards the interaction so that the agent can react accordingly. The goal of this paper is to develop an automatic real-time engagement recognition system using a combination of non-verbal features (gaze direction, head position, facial expression and distance between users) extracted using computer vision techniques. Our system uses a machine learning model based on Random Forest and achieves 86% accuracy, improving the results of the state-of-the-art methods by 22.2% in engagement level detection accuracy on the Daisee dataset. Furthermore, using an RGB camera, the system can detect the level of user engagement in real-time and classify it into four levels of intensity.\",\"PeriodicalId\":274171,\"journal\":{\"name\":\"2022 IEEE International Conference on Development and Learning (ICDL)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Development and Learning (ICDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDL53763.2022.9962228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Development and Learning (ICDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL53763.2022.9962228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,参与检测在电子学习教育和机器人技术中发挥着至关重要的作用。在人与智能体交互领域中,了解人类同伴对交互的态度以使智能体做出相应的反应是一个非常重要的问题。本文的目标是利用计算机视觉技术提取的非语言特征(凝视方向、头部位置、面部表情和用户之间的距离)的组合,开发一个自动实时参与识别系统。我们的系统使用了基于随机森林的机器学习模型,达到了86%的准确率,将Daisee数据集的交战级别检测准确率提高了22.2%。此外,使用RGB相机,该系统可以实时检测用户参与程度,并将其分为四个强度级别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time Engagement Detection from Facial Features
Nowadays, engagement detection plays an essential role in e-learning education and robotics. In the field of human-agent interaction, it is of great interest to know the attitude of the human peer towards the interaction so that the agent can react accordingly. The goal of this paper is to develop an automatic real-time engagement recognition system using a combination of non-verbal features (gaze direction, head position, facial expression and distance between users) extracted using computer vision techniques. Our system uses a machine learning model based on Random Forest and achieves 86% accuracy, improving the results of the state-of-the-art methods by 22.2% in engagement level detection accuracy on the Daisee dataset. Furthermore, using an RGB camera, the system can detect the level of user engagement in real-time and classify it into four levels of intensity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信