{"title":"自主移动机器人在线显著性学习的探索策略","authors":"Céline Craye, David Filliat, Jean-François Goudou","doi":"10.1109/IROS.2016.7759716","DOIUrl":null,"url":null,"abstract":"In the context of visual object search and localization, saliency maps provide an efficient way to find object candidates in images. Unlike most approaches, we propose a way to learn saliency maps directly on a robot, by exploring the environment, discovering salient objects using geometric cues, and learning their visual aspects. More importantly, we provide an autonomous exploration strategy able to drive the robot for the task of learning saliency. For that, we describe the Reinforcement Learning-Intelligent Adaptive Curiosity algorithm (RL-IAC), a mechanism based on IAC (Intelligent Adaptive Curiosity) able to guide the robot through areas of the space where learning progress is high, while minimizing the time spent to move in its environment without learning. We demonstrate first that our saliency approach is an efficient tool to generate relevant object boxes proposal in the input image and significantly outperforms the state-of-the-art EdgeBoxes algorithm. Second, we show that RL-IAC can drastically decrease the required time for learning saliency compared to random exploration.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"RL-IAC: An exploration policy for online saliency learning on an autonomous mobile robot\",\"authors\":\"Céline Craye, David Filliat, Jean-François Goudou\",\"doi\":\"10.1109/IROS.2016.7759716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of visual object search and localization, saliency maps provide an efficient way to find object candidates in images. Unlike most approaches, we propose a way to learn saliency maps directly on a robot, by exploring the environment, discovering salient objects using geometric cues, and learning their visual aspects. More importantly, we provide an autonomous exploration strategy able to drive the robot for the task of learning saliency. For that, we describe the Reinforcement Learning-Intelligent Adaptive Curiosity algorithm (RL-IAC), a mechanism based on IAC (Intelligent Adaptive Curiosity) able to guide the robot through areas of the space where learning progress is high, while minimizing the time spent to move in its environment without learning. We demonstrate first that our saliency approach is an efficient tool to generate relevant object boxes proposal in the input image and significantly outperforms the state-of-the-art EdgeBoxes algorithm. Second, we show that RL-IAC can drastically decrease the required time for learning saliency compared to random exploration.\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
RL-IAC: An exploration policy for online saliency learning on an autonomous mobile robot
In the context of visual object search and localization, saliency maps provide an efficient way to find object candidates in images. Unlike most approaches, we propose a way to learn saliency maps directly on a robot, by exploring the environment, discovering salient objects using geometric cues, and learning their visual aspects. More importantly, we provide an autonomous exploration strategy able to drive the robot for the task of learning saliency. For that, we describe the Reinforcement Learning-Intelligent Adaptive Curiosity algorithm (RL-IAC), a mechanism based on IAC (Intelligent Adaptive Curiosity) able to guide the robot through areas of the space where learning progress is high, while minimizing the time spent to move in its environment without learning. We demonstrate first that our saliency approach is an efficient tool to generate relevant object boxes proposal in the input image and significantly outperforms the state-of-the-art EdgeBoxes algorithm. Second, we show that RL-IAC can drastically decrease the required time for learning saliency compared to random exploration.