鲁棒标签一致字典学习人脸识别

Sowjanya Modalavalasa, U. K. Sahoo, A. Sahoo
{"title":"鲁棒标签一致字典学习人脸识别","authors":"Sowjanya Modalavalasa, U. K. Sahoo, A. Sahoo","doi":"10.1109/INDICON.2017.8487524","DOIUrl":null,"url":null,"abstract":"The Label Consistent K-Singular Value Decomposition (LC-KSVD) algorithm, which has been introduced recently has shown better results for learning a discriminative dictionary for recognition and classification by considering the label consistency constraint in the cost function. However this approach assumes Guassian distribution for the coding residual, which might not be true in the practical Face Recognition system due to lighting, occlusion/disguise and expression variations. In this paper, we propose a new Robust Label Consistent Dictionary Learning (RLC-DL) algorithm, which assumes that the coding residual and coefficients are identically distributed, independent and tries to find a Maximum Likelihood Estimation of the coding problem. The proposed algorithm is evaluated on the publicly available face datasets and it shows superior performance than state of the art algorithms available including LC-KSVD for face recognition.","PeriodicalId":263943,"journal":{"name":"2017 14th IEEE India Council International Conference (INDICON)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Label Consistent Dictionary Learning for Face Recognition\",\"authors\":\"Sowjanya Modalavalasa, U. K. Sahoo, A. Sahoo\",\"doi\":\"10.1109/INDICON.2017.8487524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Label Consistent K-Singular Value Decomposition (LC-KSVD) algorithm, which has been introduced recently has shown better results for learning a discriminative dictionary for recognition and classification by considering the label consistency constraint in the cost function. However this approach assumes Guassian distribution for the coding residual, which might not be true in the practical Face Recognition system due to lighting, occlusion/disguise and expression variations. In this paper, we propose a new Robust Label Consistent Dictionary Learning (RLC-DL) algorithm, which assumes that the coding residual and coefficients are identically distributed, independent and tries to find a Maximum Likelihood Estimation of the coding problem. The proposed algorithm is evaluated on the publicly available face datasets and it shows superior performance than state of the art algorithms available including LC-KSVD for face recognition.\",\"PeriodicalId\":263943,\"journal\":{\"name\":\"2017 14th IEEE India Council International Conference (INDICON)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 14th IEEE India Council International Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDICON.2017.8487524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th IEEE India Council International Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDICON.2017.8487524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近引入的标签一致性k -奇异值分解(LC-KSVD)算法通过考虑代价函数中的标签一致性约束,在学习判别字典进行识别和分类方面取得了较好的效果。然而,这种方法假设编码残差的高斯分布,这在实际的人脸识别系统中可能不正确,因为光照、遮挡/伪装和表情变化。在本文中,我们提出了一种新的鲁棒标签一致字典学习(RLC-DL)算法,该算法假设编码残差和系数是同分布、独立的,并试图找到编码问题的极大似然估计。所提出的算法在公开可用的人脸数据集上进行了评估,它比包括LC-KSVD在内的最先进的人脸识别算法表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Label Consistent Dictionary Learning for Face Recognition
The Label Consistent K-Singular Value Decomposition (LC-KSVD) algorithm, which has been introduced recently has shown better results for learning a discriminative dictionary for recognition and classification by considering the label consistency constraint in the cost function. However this approach assumes Guassian distribution for the coding residual, which might not be true in the practical Face Recognition system due to lighting, occlusion/disguise and expression variations. In this paper, we propose a new Robust Label Consistent Dictionary Learning (RLC-DL) algorithm, which assumes that the coding residual and coefficients are identically distributed, independent and tries to find a Maximum Likelihood Estimation of the coding problem. The proposed algorithm is evaluated on the publicly available face datasets and it shows superior performance than state of the art algorithms available including LC-KSVD for face recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信