落后于曲线,超越曲线

Bastian Becker
{"title":"落后于曲线,超越曲线","authors":"Bastian Becker","doi":"10.51936/lpfv6993","DOIUrl":null,"url":null,"abstract":"Parameter coefficients from non-linear models are inherently difficult to interpret, and scholars frequently opt for computing and comparing predicted probabilities for variables of interest. In an influential article, Hanmer and Ozan Kalkan (2013) discuss the two most common approaches, the average case respectively observed values approach, and make a strong case for the latter. In this paper, I propose a further refinement of the observed values approach for the purpose of computing predicted probability changes. This refinement concerns the use of counterfactual values for the independent variable of interest. I demonstrate that accounting for non-linearities with regards to the variable of interest is important to avoid estimation biases. I also discuss the implications of this insight for estimating average treatment effects from observational data.","PeriodicalId":242585,"journal":{"name":"Advances in Methodology and Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behind the curve and beyond\",\"authors\":\"Bastian Becker\",\"doi\":\"10.51936/lpfv6993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parameter coefficients from non-linear models are inherently difficult to interpret, and scholars frequently opt for computing and comparing predicted probabilities for variables of interest. In an influential article, Hanmer and Ozan Kalkan (2013) discuss the two most common approaches, the average case respectively observed values approach, and make a strong case for the latter. In this paper, I propose a further refinement of the observed values approach for the purpose of computing predicted probability changes. This refinement concerns the use of counterfactual values for the independent variable of interest. I demonstrate that accounting for non-linearities with regards to the variable of interest is important to avoid estimation biases. I also discuss the implications of this insight for estimating average treatment effects from observational data.\",\"PeriodicalId\":242585,\"journal\":{\"name\":\"Advances in Methodology and Statistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Methodology and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51936/lpfv6993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methodology and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51936/lpfv6993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非线性模型的参数系数本身就很难解释,学者们经常选择计算和比较感兴趣的变量的预测概率。在一篇有影响力的文章中,Hanmer和Ozan Kalkan(2013)讨论了两种最常见的方法,即平均情况下分别观察值方法,并为后者提出了强有力的案例。在本文中,我提出了对观测值方法的进一步改进,以计算预测的概率变化。这种改进涉及到对兴趣自变量的反事实值的使用。我证明了考虑有关感兴趣的变量的非线性对于避免估计偏差是重要的。我还讨论了从观察数据估计平均治疗效果的这一见解的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behind the curve and beyond
Parameter coefficients from non-linear models are inherently difficult to interpret, and scholars frequently opt for computing and comparing predicted probabilities for variables of interest. In an influential article, Hanmer and Ozan Kalkan (2013) discuss the two most common approaches, the average case respectively observed values approach, and make a strong case for the latter. In this paper, I propose a further refinement of the observed values approach for the purpose of computing predicted probability changes. This refinement concerns the use of counterfactual values for the independent variable of interest. I demonstrate that accounting for non-linearities with regards to the variable of interest is important to avoid estimation biases. I also discuss the implications of this insight for estimating average treatment effects from observational data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信