E. Jones, P. Williford, Zhe Yang, Jianliang Chen, Fred Wang, S. Bala, Jing Xu, J. Puukko
{"title":"在硬开关变换器中最大化氮化镓场效应管的电压和电流能力","authors":"E. Jones, P. Williford, Zhe Yang, Jianliang Chen, Fred Wang, S. Bala, Jing Xu, J. Puukko","doi":"10.1109/PEDS.2017.8289268","DOIUrl":null,"url":null,"abstract":"This paper establishes a methodology for maximizing the voltage and current capability of a GaN FET, while maintaining an acceptably low overshoot voltage and junction temperature to prevent damage to the device. Two key contributions of this work are the gate driver design parameters and operating conditions that impact overshoot voltage, and a heatsink design for bottom-side cooling that avoids thermal vias. Additionally, the static and dynamic characterization steps required for this methodology are described, and an example GaN-based full-bridge inverter was designed and tested for experimental verification, using GaN gate injection transistors with capacitive gate driver circuits.","PeriodicalId":411916,"journal":{"name":"2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Maximizing the voltage and current capability of GaN FETs in a hard-switching converter\",\"authors\":\"E. Jones, P. Williford, Zhe Yang, Jianliang Chen, Fred Wang, S. Bala, Jing Xu, J. Puukko\",\"doi\":\"10.1109/PEDS.2017.8289268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establishes a methodology for maximizing the voltage and current capability of a GaN FET, while maintaining an acceptably low overshoot voltage and junction temperature to prevent damage to the device. Two key contributions of this work are the gate driver design parameters and operating conditions that impact overshoot voltage, and a heatsink design for bottom-side cooling that avoids thermal vias. Additionally, the static and dynamic characterization steps required for this methodology are described, and an example GaN-based full-bridge inverter was designed and tested for experimental verification, using GaN gate injection transistors with capacitive gate driver circuits.\",\"PeriodicalId\":411916,\"journal\":{\"name\":\"2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDS.2017.8289268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 12th International Conference on Power Electronics and Drive Systems (PEDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDS.2017.8289268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maximizing the voltage and current capability of GaN FETs in a hard-switching converter
This paper establishes a methodology for maximizing the voltage and current capability of a GaN FET, while maintaining an acceptably low overshoot voltage and junction temperature to prevent damage to the device. Two key contributions of this work are the gate driver design parameters and operating conditions that impact overshoot voltage, and a heatsink design for bottom-side cooling that avoids thermal vias. Additionally, the static and dynamic characterization steps required for this methodology are described, and an example GaN-based full-bridge inverter was designed and tested for experimental verification, using GaN gate injection transistors with capacitive gate driver circuits.