基于BP和RBF神经网络的农产品价格预测

Jiajun Zong, Quanyin Zhu
{"title":"基于BP和RBF神经网络的农产品价格预测","authors":"Jiajun Zong, Quanyin Zhu","doi":"10.1109/ICSESS.2012.6269540","DOIUrl":null,"url":null,"abstract":"In order to get the excellent accuracy for price forecast in the agriculture products market, the adaptive Radial Basis Function (RBF) Neural Network (NN) and Back Propagation (BP) NN are utilized to forecast the price of the agriculture products in this paper. Ten agriculture products, which extracted from Agricultural Bank of China at January, 2011 to December 2011, are selected to forecast the price about four weeks and compare the Mean Absolute Percentage Errors (MAPE) by RBF NN and BP NN respectively. Experiments demonstrate that the BP is better model which can get more than 99.6 percent accuracy than the RBF that can reduce the MAPE in the price forecast for the agriculture products market. Experiment results prove that this verdict is meaningful and useful to analyze and to research the price forecast in the agriculture products market.","PeriodicalId":205738,"journal":{"name":"2012 IEEE International Conference on Computer Science and Automation Engineering","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Price forecasting for agricultural products based on BP and RBF Neural Network\",\"authors\":\"Jiajun Zong, Quanyin Zhu\",\"doi\":\"10.1109/ICSESS.2012.6269540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to get the excellent accuracy for price forecast in the agriculture products market, the adaptive Radial Basis Function (RBF) Neural Network (NN) and Back Propagation (BP) NN are utilized to forecast the price of the agriculture products in this paper. Ten agriculture products, which extracted from Agricultural Bank of China at January, 2011 to December 2011, are selected to forecast the price about four weeks and compare the Mean Absolute Percentage Errors (MAPE) by RBF NN and BP NN respectively. Experiments demonstrate that the BP is better model which can get more than 99.6 percent accuracy than the RBF that can reduce the MAPE in the price forecast for the agriculture products market. Experiment results prove that this verdict is meaningful and useful to analyze and to research the price forecast in the agriculture products market.\",\"PeriodicalId\":205738,\"journal\":{\"name\":\"2012 IEEE International Conference on Computer Science and Automation Engineering\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Computer Science and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2012.6269540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2012.6269540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

为了获得较好的农产品市场价格预测精度,本文将自适应径向基函数(RBF)神经网络(NN)和反向传播(BP)神经网络(NN)应用于农产品市场价格预测。选取2011年1月至12月中国农业银行10个农产品样本,分别用RBF神经网络和BP神经网络对4周左右的农产品价格进行预测,比较它们的平均绝对百分比误差(MAPE)。实验表明,BP是一种较好的模型,在农产品市场的价格预测中,BP模型的准确率可以达到99.6%以上,而RBF模型可以降低MAPE。实验结果表明,该结论对分析和研究农产品市场的价格预测具有重要意义和实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Price forecasting for agricultural products based on BP and RBF Neural Network
In order to get the excellent accuracy for price forecast in the agriculture products market, the adaptive Radial Basis Function (RBF) Neural Network (NN) and Back Propagation (BP) NN are utilized to forecast the price of the agriculture products in this paper. Ten agriculture products, which extracted from Agricultural Bank of China at January, 2011 to December 2011, are selected to forecast the price about four weeks and compare the Mean Absolute Percentage Errors (MAPE) by RBF NN and BP NN respectively. Experiments demonstrate that the BP is better model which can get more than 99.6 percent accuracy than the RBF that can reduce the MAPE in the price forecast for the agriculture products market. Experiment results prove that this verdict is meaningful and useful to analyze and to research the price forecast in the agriculture products market.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信