一种新的统计参数提取方法

K. Krishna, S. W. Director
{"title":"一种新的统计参数提取方法","authors":"K. Krishna, S. W. Director","doi":"10.1109/ICCAD.1995.480205","DOIUrl":null,"url":null,"abstract":"IC manufacturing process variations are typically expressed in terms of joint probability density functions (jpdf's) or as worst case combinations/corners of the device model parameters. However, since device models can only provide approximations to actual device behavior, the difference between the two being the modelling error only a part of the measured variation in device behavior can be modelled using device model parameter variations and the remaining appears as modelling error variation. In this paper we present a novel statistical parameter extraction methodology that accounts for the effect of modelling error on device model parameter statistics and can be used to quantify the statistical suitability of conventional MOS device models.","PeriodicalId":367501,"journal":{"name":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A novel methodology for statistical parameter extraction\",\"authors\":\"K. Krishna, S. W. Director\",\"doi\":\"10.1109/ICCAD.1995.480205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IC manufacturing process variations are typically expressed in terms of joint probability density functions (jpdf's) or as worst case combinations/corners of the device model parameters. However, since device models can only provide approximations to actual device behavior, the difference between the two being the modelling error only a part of the measured variation in device behavior can be modelled using device model parameter variations and the remaining appears as modelling error variation. In this paper we present a novel statistical parameter extraction methodology that accounts for the effect of modelling error on device model parameter statistics and can be used to quantify the statistical suitability of conventional MOS device models.\",\"PeriodicalId\":367501,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1995.480205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1995.480205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

IC制造工艺变化通常以联合概率密度函数(jpdf)或器件模型参数的最坏情况组合/角来表示。然而,由于设备模型只能提供实际设备行为的近似值,两者之间的区别是建模误差,只有一部分测量到的设备行为变化可以使用设备模型参数变化来建模,其余的则显示为建模误差变化。在本文中,我们提出了一种新的统计参数提取方法,该方法考虑了建模误差对器件模型参数统计的影响,可用于量化传统MOS器件模型的统计适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel methodology for statistical parameter extraction
IC manufacturing process variations are typically expressed in terms of joint probability density functions (jpdf's) or as worst case combinations/corners of the device model parameters. However, since device models can only provide approximations to actual device behavior, the difference between the two being the modelling error only a part of the measured variation in device behavior can be modelled using device model parameter variations and the remaining appears as modelling error variation. In this paper we present a novel statistical parameter extraction methodology that accounts for the effect of modelling error on device model parameter statistics and can be used to quantify the statistical suitability of conventional MOS device models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信