基于归一化信息距离的视频分类

K. Kaabneh, A. Abdullah, Z. Al-Halalemah
{"title":"基于归一化信息距离的视频分类","authors":"K. Kaabneh, A. Abdullah, Z. Al-Halalemah","doi":"10.1109/GMAI.2006.46","DOIUrl":null,"url":null,"abstract":"There has been a vast collection of multimedia resources on the net. This has opened an opening for researchers to explore and advance the science in the field of research in storing, handling, and retrieving digital videos. Video classification and segmentation are fundamental steps for efficient accessing; retrieving, browsing and compressing large amount of video data. The basic operation video analysis is to design a system that can accurately and automatically segments video material into shots and scenes. This paper presents a detailed video segmentation technique based on pervious researches which lacks performance and since some of the videos is stored in a compressed form using the normalized information distance (NID) which approximates the value of a theoretical distance between objects using the Kolmogrov complexity theory. This technique produced a better result in reference to performance, high recall of 95.5% and a precision of 89.7%","PeriodicalId":438098,"journal":{"name":"Geometric Modeling and Imaging--New Trends (GMAI'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Video Classification Using Normalized Information Distance\",\"authors\":\"K. Kaabneh, A. Abdullah, Z. Al-Halalemah\",\"doi\":\"10.1109/GMAI.2006.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been a vast collection of multimedia resources on the net. This has opened an opening for researchers to explore and advance the science in the field of research in storing, handling, and retrieving digital videos. Video classification and segmentation are fundamental steps for efficient accessing; retrieving, browsing and compressing large amount of video data. The basic operation video analysis is to design a system that can accurately and automatically segments video material into shots and scenes. This paper presents a detailed video segmentation technique based on pervious researches which lacks performance and since some of the videos is stored in a compressed form using the normalized information distance (NID) which approximates the value of a theoretical distance between objects using the Kolmogrov complexity theory. This technique produced a better result in reference to performance, high recall of 95.5% and a precision of 89.7%\",\"PeriodicalId\":438098,\"journal\":{\"name\":\"Geometric Modeling and Imaging--New Trends (GMAI'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric Modeling and Imaging--New Trends (GMAI'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GMAI.2006.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric Modeling and Imaging--New Trends (GMAI'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GMAI.2006.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

网络上有大量的多媒体资源。这为研究人员在存储、处理和检索数字视频的研究领域探索和推进科学打开了大门。视频分类和分割是实现高效访问的基本步骤;检索、浏览和压缩大量视频数据。视频分析的基本操作是设计一个能够准确自动地将视频素材分割成镜头和场景的系统。本文提出了一种详细的视频分割技术,该技术基于先前的研究,缺乏性能,因为一些视频是使用归一化信息距离(NID)以压缩形式存储的,NID近似于使用Kolmogrov复杂性理论的物体之间的理论距离值。该方法在参考性能上取得了较好的结果,查全率为95.5%,查准率为89.7%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video Classification Using Normalized Information Distance
There has been a vast collection of multimedia resources on the net. This has opened an opening for researchers to explore and advance the science in the field of research in storing, handling, and retrieving digital videos. Video classification and segmentation are fundamental steps for efficient accessing; retrieving, browsing and compressing large amount of video data. The basic operation video analysis is to design a system that can accurately and automatically segments video material into shots and scenes. This paper presents a detailed video segmentation technique based on pervious researches which lacks performance and since some of the videos is stored in a compressed form using the normalized information distance (NID) which approximates the value of a theoretical distance between objects using the Kolmogrov complexity theory. This technique produced a better result in reference to performance, high recall of 95.5% and a precision of 89.7%
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信