用于近似算术设计的精度可配置加法器

A. Kahng, Seokhyeong Kang
{"title":"用于近似算术设计的精度可配置加法器","authors":"A. Kahng, Seokhyeong Kang","doi":"10.1145/2228360.2228509","DOIUrl":null,"url":null,"abstract":"Approximation can increase performance or reduce power consumption with a simplified or inaccurate circuit in application contexts where strict requirements are relaxed. For applications related to human senses, approximate arithmetic can be used to generate sufficient results rather than absolutely accurate results. Approximate design exploits a tradeoff of accuracy in computation versus performance and power. However, required accuracy varies according to applications, and 100% accurate results are still required in some situations. In this paper, we propose an accuracy-configurable approximate (ACA) adder for which the accuracy of results is configurable during runtime. Because of its configurability, the ACA adder can adaptively operate in both approximate (inaccurate) mode and accurate mode. The proposed adder can achieve significant throughput improvement and total power reduction over conventional adder designs. It can be used in accuracy-configurable applications, and improves the achievable tradeoff between performance/power and quality. The ACA adder achieves approximately 30% power reduction versus the conventional pipelined adder at the relaxed accuracy requirement.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"441","resultStr":"{\"title\":\"Accuracy-configurable adder for approximate arithmetic designs\",\"authors\":\"A. Kahng, Seokhyeong Kang\",\"doi\":\"10.1145/2228360.2228509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Approximation can increase performance or reduce power consumption with a simplified or inaccurate circuit in application contexts where strict requirements are relaxed. For applications related to human senses, approximate arithmetic can be used to generate sufficient results rather than absolutely accurate results. Approximate design exploits a tradeoff of accuracy in computation versus performance and power. However, required accuracy varies according to applications, and 100% accurate results are still required in some situations. In this paper, we propose an accuracy-configurable approximate (ACA) adder for which the accuracy of results is configurable during runtime. Because of its configurability, the ACA adder can adaptively operate in both approximate (inaccurate) mode and accurate mode. The proposed adder can achieve significant throughput improvement and total power reduction over conventional adder designs. It can be used in accuracy-configurable applications, and improves the achievable tradeoff between performance/power and quality. The ACA adder achieves approximately 30% power reduction versus the conventional pipelined adder at the relaxed accuracy requirement.\",\"PeriodicalId\":263599,\"journal\":{\"name\":\"DAC Design Automation Conference 2012\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"441\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DAC Design Automation Conference 2012\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2228360.2228509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 441

摘要

在严格要求放松的应用环境中,近似可以通过简化或不准确的电路提高性能或降低功耗。对于与人类感官相关的应用,近似算法可以产生足够的结果,而不是绝对准确的结果。近似设计利用了计算精度与性能和功率之间的权衡。然而,所需的精度因应用而异,在某些情况下仍然需要100%准确的结果。本文提出了一种精度可配置近似加法器,其结果的精度在运行时是可配置的。由于其可配置性,ACA加法器可以在近似(不精确)模式和精确模式下自适应工作。与传统的加法器设计相比,所提出的加法器可以实现显著的吞吐量提高和总功耗降低。它可以用于精度可配置的应用,并改善性能/功率和质量之间的可实现权衡。在放宽精度要求的情况下,与传统的流水线加法器相比,ACA加法器的功耗降低了约30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accuracy-configurable adder for approximate arithmetic designs
Approximation can increase performance or reduce power consumption with a simplified or inaccurate circuit in application contexts where strict requirements are relaxed. For applications related to human senses, approximate arithmetic can be used to generate sufficient results rather than absolutely accurate results. Approximate design exploits a tradeoff of accuracy in computation versus performance and power. However, required accuracy varies according to applications, and 100% accurate results are still required in some situations. In this paper, we propose an accuracy-configurable approximate (ACA) adder for which the accuracy of results is configurable during runtime. Because of its configurability, the ACA adder can adaptively operate in both approximate (inaccurate) mode and accurate mode. The proposed adder can achieve significant throughput improvement and total power reduction over conventional adder designs. It can be used in accuracy-configurable applications, and improves the achievable tradeoff between performance/power and quality. The ACA adder achieves approximately 30% power reduction versus the conventional pipelined adder at the relaxed accuracy requirement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信