机器学习预测圆锥角膜患者角膜环植入术后散光

M. Valdés-Mas, J. Martín-Guerrero, M. J. Rupérez, C. Peris, Carlos Monserrat Aranda
{"title":"机器学习预测圆锥角膜患者角膜环植入术后散光","authors":"M. Valdés-Mas, J. Martín-Guerrero, M. J. Rupérez, C. Peris, Carlos Monserrat Aranda","doi":"10.1109/BHI.2014.6864474","DOIUrl":null,"url":null,"abstract":"This work proposes a new approach based on Machine Learning to predict astigmatism in patients with kera-toconus (KC) after ring implantation. KC is a non-inflamatory, progressive thinning disorder of the cornea, resulting in a protusion, myopia and irregular astigmatism. The intracorneal ring implantation surgery has become a suitable technique to deal with keratoconus without the need of a corneal transplant. Two machine learning (ML) classifiers based on artificial neural network and a decision tree were used in this work. Artificial neural networks performed better than decision trees, achieving an absolute mean error lower than 2 diopters in a validation data set. An analysis of the most relevant features was also carried out.","PeriodicalId":177948,"journal":{"name":"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Machine learning for predicting astigmatism in patients with keratoconus after intracorneal ring implantation\",\"authors\":\"M. Valdés-Mas, J. Martín-Guerrero, M. J. Rupérez, C. Peris, Carlos Monserrat Aranda\",\"doi\":\"10.1109/BHI.2014.6864474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a new approach based on Machine Learning to predict astigmatism in patients with kera-toconus (KC) after ring implantation. KC is a non-inflamatory, progressive thinning disorder of the cornea, resulting in a protusion, myopia and irregular astigmatism. The intracorneal ring implantation surgery has become a suitable technique to deal with keratoconus without the need of a corneal transplant. Two machine learning (ML) classifiers based on artificial neural network and a decision tree were used in this work. Artificial neural networks performed better than decision trees, achieving an absolute mean error lower than 2 diopters in a validation data set. An analysis of the most relevant features was also carried out.\",\"PeriodicalId\":177948,\"journal\":{\"name\":\"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BHI.2014.6864474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI.2014.6864474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种基于机器学习的预测角膜圆锥(KC)患者环植入术后散光的新方法。KC是一种非炎症性、进行性角膜变薄的疾病,可导致角膜突出、近视和不规则散光。角膜内环植入术已成为治疗圆锥角膜的一种不需要角膜移植的方法。本文采用了基于人工神经网络和决策树的机器学习分类器。人工神经网络的表现优于决策树,在验证数据集中实现了低于2屈光度的绝对平均误差。还对最相关的特征进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning for predicting astigmatism in patients with keratoconus after intracorneal ring implantation
This work proposes a new approach based on Machine Learning to predict astigmatism in patients with kera-toconus (KC) after ring implantation. KC is a non-inflamatory, progressive thinning disorder of the cornea, resulting in a protusion, myopia and irregular astigmatism. The intracorneal ring implantation surgery has become a suitable technique to deal with keratoconus without the need of a corneal transplant. Two machine learning (ML) classifiers based on artificial neural network and a decision tree were used in this work. Artificial neural networks performed better than decision trees, achieving an absolute mean error lower than 2 diopters in a validation data set. An analysis of the most relevant features was also carried out.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信