{"title":"乳腺x线图像分割策略的比较分析","authors":"Areej Rebat Abed, Karim Hussein","doi":"10.37899/journallamultiapp.v3i2.567","DOIUrl":null,"url":null,"abstract":"Breast cancer is a serious medical problem that affects women all over the world, and it is one of the most well-known tumors that kill women. The specialists of Breast cancer Prefer to use imaging methods such as a mammography to speed up recovery and reduce the risk of breast cancer. An ROI describe the tumor will be retrieved from the image that is entered to detect a malignant tumor. One of the basic techniques used to classify breast cancer is segmentation. Segmentation may be difficult in the presence of noise, blurring or low contrast. Pre-processing aids in the removal of extraneous data from a picture or the enhancement of image contrast in the early stages. Classification is greatly influenced by segmentation. Recent research have presented automatic and semi-automated segmentation algorithms for extracting the region of interest (ROI), lesions, and masses to check for breast cancer. In this study provides high-level overview of approaches of segmentation, with a focus on mammography images from current research. The datasets that were available were discussed as well as the problems encountered during the segmentation operation for the identification of breast cancer.","PeriodicalId":272596,"journal":{"name":"Journal La Multiapp","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative Analysis of Mammography Image Segmentation Strategies\",\"authors\":\"Areej Rebat Abed, Karim Hussein\",\"doi\":\"10.37899/journallamultiapp.v3i2.567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer is a serious medical problem that affects women all over the world, and it is one of the most well-known tumors that kill women. The specialists of Breast cancer Prefer to use imaging methods such as a mammography to speed up recovery and reduce the risk of breast cancer. An ROI describe the tumor will be retrieved from the image that is entered to detect a malignant tumor. One of the basic techniques used to classify breast cancer is segmentation. Segmentation may be difficult in the presence of noise, blurring or low contrast. Pre-processing aids in the removal of extraneous data from a picture or the enhancement of image contrast in the early stages. Classification is greatly influenced by segmentation. Recent research have presented automatic and semi-automated segmentation algorithms for extracting the region of interest (ROI), lesions, and masses to check for breast cancer. In this study provides high-level overview of approaches of segmentation, with a focus on mammography images from current research. The datasets that were available were discussed as well as the problems encountered during the segmentation operation for the identification of breast cancer.\",\"PeriodicalId\":272596,\"journal\":{\"name\":\"Journal La Multiapp\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal La Multiapp\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37899/journallamultiapp.v3i2.567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal La Multiapp","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37899/journallamultiapp.v3i2.567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Analysis of Mammography Image Segmentation Strategies
Breast cancer is a serious medical problem that affects women all over the world, and it is one of the most well-known tumors that kill women. The specialists of Breast cancer Prefer to use imaging methods such as a mammography to speed up recovery and reduce the risk of breast cancer. An ROI describe the tumor will be retrieved from the image that is entered to detect a malignant tumor. One of the basic techniques used to classify breast cancer is segmentation. Segmentation may be difficult in the presence of noise, blurring or low contrast. Pre-processing aids in the removal of extraneous data from a picture or the enhancement of image contrast in the early stages. Classification is greatly influenced by segmentation. Recent research have presented automatic and semi-automated segmentation algorithms for extracting the region of interest (ROI), lesions, and masses to check for breast cancer. In this study provides high-level overview of approaches of segmentation, with a focus on mammography images from current research. The datasets that were available were discussed as well as the problems encountered during the segmentation operation for the identification of breast cancer.