高效神经形态计算的多级Cell ReRAM自终止写入

Zongwu Wang, Zhezhi He, Rui Yang, Shiquan Fan, Jie Lin, Fangxin Liu, Yueyang Jia, Chenxi Yuan, Qidong Tang, Li Jiang
{"title":"高效神经形态计算的多级Cell ReRAM自终止写入","authors":"Zongwu Wang, Zhezhi He, Rui Yang, Shiquan Fan, Jie Lin, Fangxin Liu, Yueyang Jia, Chenxi Yuan, Qidong Tang, Li Jiang","doi":"10.23919/DATE54114.2022.9774550","DOIUrl":null,"url":null,"abstract":"The Resistive Random-Access-Memory (ReRAM) in crossbar structure has shown great potential in accelerating the vector-matrix multiplication, owing to the fascinating computing complexity reduction (from O(n2) to O(1)). Nevertheless, the ReRAM cells still encounter device programming variation and resistance drifting during computation (known as read disturbance), which significantly hamper its analog computing precision. Inspired by prior precise memory programming works, we propose a Self-Terminating Write (STW) circuit for Multi-Level Cell (MLC) ReRAM. In order to minimize the area overhead, the design heavily reuses inherent computing peripherals (e.g., Analog-to-Digital Converter and Trans-Impedance Amplifier) in conventional dot-product engine. Thanks to the fast and precise programming capability of our design, the ReRAM cell can possess 4 linear distributed conductance levels, with minimum latency used for intermediate resistance refreshing. Our comprehensive cross-layer (device/circuit/architecture) simulation indicates that the proposed MLC STW scheme can effectively obtain 2-bit precision via a single programming pulse. Besides, our design outperforms the prior write&verify schemes by 4.7× and 2× in programming latency and energy, respectively.","PeriodicalId":232583,"journal":{"name":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-Terminating Write of Multi-Level Cell ReRAM for Efficient Neuromorphic Computing\",\"authors\":\"Zongwu Wang, Zhezhi He, Rui Yang, Shiquan Fan, Jie Lin, Fangxin Liu, Yueyang Jia, Chenxi Yuan, Qidong Tang, Li Jiang\",\"doi\":\"10.23919/DATE54114.2022.9774550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Resistive Random-Access-Memory (ReRAM) in crossbar structure has shown great potential in accelerating the vector-matrix multiplication, owing to the fascinating computing complexity reduction (from O(n2) to O(1)). Nevertheless, the ReRAM cells still encounter device programming variation and resistance drifting during computation (known as read disturbance), which significantly hamper its analog computing precision. Inspired by prior precise memory programming works, we propose a Self-Terminating Write (STW) circuit for Multi-Level Cell (MLC) ReRAM. In order to minimize the area overhead, the design heavily reuses inherent computing peripherals (e.g., Analog-to-Digital Converter and Trans-Impedance Amplifier) in conventional dot-product engine. Thanks to the fast and precise programming capability of our design, the ReRAM cell can possess 4 linear distributed conductance levels, with minimum latency used for intermediate resistance refreshing. Our comprehensive cross-layer (device/circuit/architecture) simulation indicates that the proposed MLC STW scheme can effectively obtain 2-bit precision via a single programming pulse. Besides, our design outperforms the prior write&verify schemes by 4.7× and 2× in programming latency and energy, respectively.\",\"PeriodicalId\":232583,\"journal\":{\"name\":\"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/DATE54114.2022.9774550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE54114.2022.9774550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

电阻式随机存取存储器(ReRAM)具有显著的计算复杂度降低(从0 (n2)降低到0(1)),在加速向量矩阵乘法方面显示出巨大的潜力。然而,ReRAM单元在计算过程中仍然会遇到器件编程变化和电阻漂移(称为读干扰),这严重影响了其模拟计算精度。受先前精确存储器编程工作的启发,我们提出了一种用于多级单元(MLC) ReRAM的自终止写入(STW)电路。为了最小化面积开销,该设计大量重用了传统点积引擎中固有的计算外设(例如,模数转换器和反阻抗放大器)。由于我们设计的快速和精确的编程能力,ReRAM单元可以具有4个线性分布的电导水平,以最小的延迟用于中间电阻刷新。综合跨层(器件/电路/体系结构)仿真表明,所提出的MLC STW方案可以通过单个编程脉冲有效地获得2位精度。此外,我们的设计在编程延迟和能量方面分别比先前的写验证方案高4.7倍和2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Terminating Write of Multi-Level Cell ReRAM for Efficient Neuromorphic Computing
The Resistive Random-Access-Memory (ReRAM) in crossbar structure has shown great potential in accelerating the vector-matrix multiplication, owing to the fascinating computing complexity reduction (from O(n2) to O(1)). Nevertheless, the ReRAM cells still encounter device programming variation and resistance drifting during computation (known as read disturbance), which significantly hamper its analog computing precision. Inspired by prior precise memory programming works, we propose a Self-Terminating Write (STW) circuit for Multi-Level Cell (MLC) ReRAM. In order to minimize the area overhead, the design heavily reuses inherent computing peripherals (e.g., Analog-to-Digital Converter and Trans-Impedance Amplifier) in conventional dot-product engine. Thanks to the fast and precise programming capability of our design, the ReRAM cell can possess 4 linear distributed conductance levels, with minimum latency used for intermediate resistance refreshing. Our comprehensive cross-layer (device/circuit/architecture) simulation indicates that the proposed MLC STW scheme can effectively obtain 2-bit precision via a single programming pulse. Besides, our design outperforms the prior write&verify schemes by 4.7× and 2× in programming latency and energy, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信