{"title":"用evmdd表示二变量初等函数及其在函数生成器中的应用","authors":"Shinobu Nagayama, Tsutomu Sasao","doi":"10.1109/ISMVL.2008.14","DOIUrl":null,"url":null,"abstract":"This paper proposes a method to represent two-variable elementary functions using edge-valued multi-valued decision diagrams (EVMDDs), and presents a design method and an architecture for function generators using EVMDDs. To show the compactness of EVMDDs, this paper introduces a new class of integer-valued functions, l-restricted Mp-monotone increasing functions, and derives an upper bound on the number of nodes in an edge-valued binary decision diagram (EVBDD) for the l-restricted Mp-monotone increasing function. EVBDDs represent l-restricted Mp- monotone increasing functions more compactly than MTB- DDs and BMDs when p is small. Experimental results show that all the two-variable elementary functions considered in this paper can be converted into l-restricted Mp- monotone increasing functions with p = 1 or p = 3, and can be compactly represented by EVBDDs. Since EVMDDs have shorter paths and smaller memory size than EVBDDs, EVMDDs can produce fast and compact elementary function generators.","PeriodicalId":243752,"journal":{"name":"38th International Symposium on Multiple Valued Logic (ismvl 2008)","volume":"30 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Representations of Two-Variable Elementary Functions Using EVMDDs and their Applications to Function Generators\",\"authors\":\"Shinobu Nagayama, Tsutomu Sasao\",\"doi\":\"10.1109/ISMVL.2008.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method to represent two-variable elementary functions using edge-valued multi-valued decision diagrams (EVMDDs), and presents a design method and an architecture for function generators using EVMDDs. To show the compactness of EVMDDs, this paper introduces a new class of integer-valued functions, l-restricted Mp-monotone increasing functions, and derives an upper bound on the number of nodes in an edge-valued binary decision diagram (EVBDD) for the l-restricted Mp-monotone increasing function. EVBDDs represent l-restricted Mp- monotone increasing functions more compactly than MTB- DDs and BMDs when p is small. Experimental results show that all the two-variable elementary functions considered in this paper can be converted into l-restricted Mp- monotone increasing functions with p = 1 or p = 3, and can be compactly represented by EVBDDs. Since EVMDDs have shorter paths and smaller memory size than EVBDDs, EVMDDs can produce fast and compact elementary function generators.\",\"PeriodicalId\":243752,\"journal\":{\"name\":\"38th International Symposium on Multiple Valued Logic (ismvl 2008)\",\"volume\":\"30 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"38th International Symposium on Multiple Valued Logic (ismvl 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2008.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"38th International Symposium on Multiple Valued Logic (ismvl 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2008.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Representations of Two-Variable Elementary Functions Using EVMDDs and their Applications to Function Generators
This paper proposes a method to represent two-variable elementary functions using edge-valued multi-valued decision diagrams (EVMDDs), and presents a design method and an architecture for function generators using EVMDDs. To show the compactness of EVMDDs, this paper introduces a new class of integer-valued functions, l-restricted Mp-monotone increasing functions, and derives an upper bound on the number of nodes in an edge-valued binary decision diagram (EVBDD) for the l-restricted Mp-monotone increasing function. EVBDDs represent l-restricted Mp- monotone increasing functions more compactly than MTB- DDs and BMDs when p is small. Experimental results show that all the two-variable elementary functions considered in this paper can be converted into l-restricted Mp- monotone increasing functions with p = 1 or p = 3, and can be compactly represented by EVBDDs. Since EVMDDs have shorter paths and smaller memory size than EVBDDs, EVMDDs can produce fast and compact elementary function generators.