一种创新的涡轮增压器等熵效率直接评估方法

S. Marelli, Vittorio Usai, Carla Cordalonga, M. Capobianco
{"title":"一种创新的涡轮增压器等熵效率直接评估方法","authors":"S. Marelli, Vittorio Usai, Carla Cordalonga, M. Capobianco","doi":"10.1115/gt2022-82463","DOIUrl":null,"url":null,"abstract":"\n Turbocharging plays a key role not only in improving automotive engine performance, but also in reducing fuel consumption and exhaust emissions for Spark Ignition and diesel engines. In depth experimental investigations on turbochargers are therefore necessary to better understand their performance. The availability of experimental information on realistic turbine steady flow performance is an essential requirement for optimizing engine-turbocharger matching calculations developed in simulation models. This is most evident with regards to the turbine efficiency, as its swallowing capacity can be accurately assessed by measuring the mass flow, inlet temperature and pressure ratio across the machine. In fact, in the case of a turbocharger radial flow turbine, the isentropic efficiency evaluated directly starting from the measurement of the thermodynamic parameters at the inlet and outlet sections can give significant errors. This inaccuracy is mainly related to the difficulty of a correct evaluation of the turbine outlet temperature due to the flow field and the temperature distribution at the machine outlet.\n The purpose of this work is to obtain a reliable measurement of the turbine outlet temperature thanks to a specific device installed before the standard measurement section to dissipate the flow structures dominated by vorticity, thus obtaining a uniform distribution of the flow fields and of temperature to the measurement section. This measurement allows to optimize turbocharger experimental performance implemented in simulation models, obtaining a better control of the after-treatment device generally adopted downstream of the turbine. To this aim, a non-intrusive 3-hole probe was adopted to perform measurement of the flow field, pressure, and temperature downstream the turbine. The main results obtained through the non-standard measurements are compared with those achieved through a direct measurement of turbine outlet temperature by three probes inserted in pipe with a different protrusion. The experimental campaign concerns investigations also developed in almost adiabatic conditions and to be adopted to carry out a realistic measurement of the turbine outlet temperature in a simpler and less time-consuming way.","PeriodicalId":301910,"journal":{"name":"Volume 7: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Microturbines, Turbochargers, and Small Turbomachines; Oil & Gas Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Innovative Measurement Technique for the Direct Evaluation of the Isentropic Efficiency of Turbocharger Turbines\",\"authors\":\"S. Marelli, Vittorio Usai, Carla Cordalonga, M. Capobianco\",\"doi\":\"10.1115/gt2022-82463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Turbocharging plays a key role not only in improving automotive engine performance, but also in reducing fuel consumption and exhaust emissions for Spark Ignition and diesel engines. In depth experimental investigations on turbochargers are therefore necessary to better understand their performance. The availability of experimental information on realistic turbine steady flow performance is an essential requirement for optimizing engine-turbocharger matching calculations developed in simulation models. This is most evident with regards to the turbine efficiency, as its swallowing capacity can be accurately assessed by measuring the mass flow, inlet temperature and pressure ratio across the machine. In fact, in the case of a turbocharger radial flow turbine, the isentropic efficiency evaluated directly starting from the measurement of the thermodynamic parameters at the inlet and outlet sections can give significant errors. This inaccuracy is mainly related to the difficulty of a correct evaluation of the turbine outlet temperature due to the flow field and the temperature distribution at the machine outlet.\\n The purpose of this work is to obtain a reliable measurement of the turbine outlet temperature thanks to a specific device installed before the standard measurement section to dissipate the flow structures dominated by vorticity, thus obtaining a uniform distribution of the flow fields and of temperature to the measurement section. This measurement allows to optimize turbocharger experimental performance implemented in simulation models, obtaining a better control of the after-treatment device generally adopted downstream of the turbine. To this aim, a non-intrusive 3-hole probe was adopted to perform measurement of the flow field, pressure, and temperature downstream the turbine. The main results obtained through the non-standard measurements are compared with those achieved through a direct measurement of turbine outlet temperature by three probes inserted in pipe with a different protrusion. The experimental campaign concerns investigations also developed in almost adiabatic conditions and to be adopted to carry out a realistic measurement of the turbine outlet temperature in a simpler and less time-consuming way.\",\"PeriodicalId\":301910,\"journal\":{\"name\":\"Volume 7: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Microturbines, Turbochargers, and Small Turbomachines; Oil & Gas Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Microturbines, Turbochargers, and Small Turbomachines; Oil & Gas Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2022-82463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: Industrial and Cogeneration; Manufacturing Materials and Metallurgy; Microturbines, Turbochargers, and Small Turbomachines; Oil & Gas Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2022-82463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

涡轮增压不仅在提高汽车发动机性能方面发挥着关键作用,而且在减少火花点火和柴油发动机的燃料消耗和废气排放方面也发挥着关键作用。因此,有必要对涡轮增压器进行深入的实验研究,以更好地了解其性能。获得真实涡轮定常流动性能的实验信息是优化仿真模型中发动机-涡轮增压器匹配计算的基本要求。这在涡轮效率方面是最明显的,因为它的吞咽能力可以通过测量整个机器的质量流量、入口温度和压力比来准确评估。事实上,在涡轮增压器径向流涡轮的情况下,直接从入口和出口段的热力学参数测量开始评估等熵效率会产生很大的误差。这种不准确性主要与由于流场和机器出口温度分布而难以正确评估涡轮出口温度有关。本工作的目的是通过在标准测量段之前安装特定的装置来耗散以涡度为主导的流动结构,从而获得流场和温度在测量段的均匀分布,从而获得涡轮出口温度的可靠测量。该测量可以优化仿真模型中实现的涡轮增压器实验性能,从而更好地控制涡轮下游通常采用的后处理装置。为此,采用非侵入式三孔探头对涡轮下游的流场、压力和温度进行测量。通过非标准测量得到的主要结果与直接测量涡轮出口温度的结果进行了比较,直接测量的结果是用三个探头插入不同突出度的管道。实验活动也涉及在几乎绝热条件下进行的研究,并采用一种更简单、更省时的方法来进行涡轮出口温度的实际测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Innovative Measurement Technique for the Direct Evaluation of the Isentropic Efficiency of Turbocharger Turbines
Turbocharging plays a key role not only in improving automotive engine performance, but also in reducing fuel consumption and exhaust emissions for Spark Ignition and diesel engines. In depth experimental investigations on turbochargers are therefore necessary to better understand their performance. The availability of experimental information on realistic turbine steady flow performance is an essential requirement for optimizing engine-turbocharger matching calculations developed in simulation models. This is most evident with regards to the turbine efficiency, as its swallowing capacity can be accurately assessed by measuring the mass flow, inlet temperature and pressure ratio across the machine. In fact, in the case of a turbocharger radial flow turbine, the isentropic efficiency evaluated directly starting from the measurement of the thermodynamic parameters at the inlet and outlet sections can give significant errors. This inaccuracy is mainly related to the difficulty of a correct evaluation of the turbine outlet temperature due to the flow field and the temperature distribution at the machine outlet. The purpose of this work is to obtain a reliable measurement of the turbine outlet temperature thanks to a specific device installed before the standard measurement section to dissipate the flow structures dominated by vorticity, thus obtaining a uniform distribution of the flow fields and of temperature to the measurement section. This measurement allows to optimize turbocharger experimental performance implemented in simulation models, obtaining a better control of the after-treatment device generally adopted downstream of the turbine. To this aim, a non-intrusive 3-hole probe was adopted to perform measurement of the flow field, pressure, and temperature downstream the turbine. The main results obtained through the non-standard measurements are compared with those achieved through a direct measurement of turbine outlet temperature by three probes inserted in pipe with a different protrusion. The experimental campaign concerns investigations also developed in almost adiabatic conditions and to be adopted to carry out a realistic measurement of the turbine outlet temperature in a simpler and less time-consuming way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信