基于改进YOLOv4的混凝土t型梁制作进度检测

Dong Liang, Liu Yang, Chuankui Ma, Yang Yu
{"title":"基于改进YOLOv4的混凝土t型梁制作进度检测","authors":"Dong Liang, Liu Yang, Chuankui Ma, Yang Yu","doi":"10.1680/jsmic.22.00020","DOIUrl":null,"url":null,"abstract":"Large precast concrete girder plants have many processes, long cycles, and a large amount of data. This study proposes an improved YOLOv4 object detection algorithm with a spatio-temporal relationship to detect each fabrication process of precast concrete girders. It realises the fabrication information’s digitisation of traditional precast concrete girder plants. Initially, adding upsampling and convolution layers to the YOLOv4 base model enhances the algorithm’s feature extraction ability at different fabrication stages of precast concrete girders. Adopting the spatio-temporal relationship to determine the fabrication progress of precast concrete girders with identical features but at various fabrication stages. Finally, this research conducts an application analysis in an actual precast concrete girder plant. The analysis result indicated that the improved YOLOv4 algorithm significantly raises mAP and Average IOU in recognition. In addition, the spatio-temporal relationship effectively solves error detection problems caused by the similar appearance at different fabrication stages. This method provides practical support for digitising the fabrication data of traditional precast girder plants.","PeriodicalId":371248,"journal":{"name":"Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction","volume":"162 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication progress detection for concrete T-girder based on improved YOLOv4\",\"authors\":\"Dong Liang, Liu Yang, Chuankui Ma, Yang Yu\",\"doi\":\"10.1680/jsmic.22.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large precast concrete girder plants have many processes, long cycles, and a large amount of data. This study proposes an improved YOLOv4 object detection algorithm with a spatio-temporal relationship to detect each fabrication process of precast concrete girders. It realises the fabrication information’s digitisation of traditional precast concrete girder plants. Initially, adding upsampling and convolution layers to the YOLOv4 base model enhances the algorithm’s feature extraction ability at different fabrication stages of precast concrete girders. Adopting the spatio-temporal relationship to determine the fabrication progress of precast concrete girders with identical features but at various fabrication stages. Finally, this research conducts an application analysis in an actual precast concrete girder plant. The analysis result indicated that the improved YOLOv4 algorithm significantly raises mAP and Average IOU in recognition. In addition, the spatio-temporal relationship effectively solves error detection problems caused by the similar appearance at different fabrication stages. This method provides practical support for digitising the fabrication data of traditional precast girder plants.\",\"PeriodicalId\":371248,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction\",\"volume\":\"162 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jsmic.22.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jsmic.22.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型混凝土预制梁厂工序多、周期长、数据量大。本研究提出了一种改进的YOLOv4目标检测算法,该算法具有时空关系,用于检测预制混凝土梁的各个制作过程。实现了传统混凝土预制梁厂制造信息的数字化。最初,在YOLOv4基础模型中加入上采样层和卷积层,增强了算法在预制混凝土梁不同制作阶段的特征提取能力。采用时空关系确定具有相同特征但处于不同制作阶段的预制混凝土梁的制作进度。最后,本研究在某实际混凝土预制梁厂进行了应用分析。分析结果表明,改进的YOLOv4算法显著提高了mAP和Average IOU的识别能力。此外,时空关系有效地解决了在不同制造阶段由于外观相似而导致的错误检测问题。该方法为传统预制梁厂制造数据的数字化提供了实际支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication progress detection for concrete T-girder based on improved YOLOv4
Large precast concrete girder plants have many processes, long cycles, and a large amount of data. This study proposes an improved YOLOv4 object detection algorithm with a spatio-temporal relationship to detect each fabrication process of precast concrete girders. It realises the fabrication information’s digitisation of traditional precast concrete girder plants. Initially, adding upsampling and convolution layers to the YOLOv4 base model enhances the algorithm’s feature extraction ability at different fabrication stages of precast concrete girders. Adopting the spatio-temporal relationship to determine the fabrication progress of precast concrete girders with identical features but at various fabrication stages. Finally, this research conducts an application analysis in an actual precast concrete girder plant. The analysis result indicated that the improved YOLOv4 algorithm significantly raises mAP and Average IOU in recognition. In addition, the spatio-temporal relationship effectively solves error detection problems caused by the similar appearance at different fabrication stages. This method provides practical support for digitising the fabrication data of traditional precast girder plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信