基于三维多尺度多注意网络的海马自动分割

Lan Lin, Wenjie Kang, Yuchao Wu, Yuhan Zhao, Sixue Wang, Danyi Lin, Jinlu Gao
{"title":"基于三维多尺度多注意网络的海马自动分割","authors":"Lan Lin, Wenjie Kang, Yuchao Wu, Yuhan Zhao, Sixue Wang, Danyi Lin, Jinlu Gao","doi":"10.1109/ICNISC54316.2021.00025","DOIUrl":null,"url":null,"abstract":"Hippocampus is one of the first affected brain regions in Alzheimer's disease (AD). To help AD diagnosis, hippocampal atrophy have been studied extensively, but accurate segmentation of hippocampus has always been a difficult problem. In this study, we propose a 3D multi-scale multi-attention UNet with the use of multi-scale inception module, residual connections and attention modules for automatic hippocampal segmentation. Experimental results on the HarP dataset show that our proposed method can achieve average Dice coefficient of 0.827 for hippocampal segmentation, which outperform classic 3D UNet. The efficiency and accuracy of the proposed methods suggests that it may facilitate the study of the hippocampus for large-scale studies.","PeriodicalId":396802,"journal":{"name":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 3D Multi-Scale Multi-Attention UNet for Automatic Hippocampal Segmentation\",\"authors\":\"Lan Lin, Wenjie Kang, Yuchao Wu, Yuhan Zhao, Sixue Wang, Danyi Lin, Jinlu Gao\",\"doi\":\"10.1109/ICNISC54316.2021.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hippocampus is one of the first affected brain regions in Alzheimer's disease (AD). To help AD diagnosis, hippocampal atrophy have been studied extensively, but accurate segmentation of hippocampus has always been a difficult problem. In this study, we propose a 3D multi-scale multi-attention UNet with the use of multi-scale inception module, residual connections and attention modules for automatic hippocampal segmentation. Experimental results on the HarP dataset show that our proposed method can achieve average Dice coefficient of 0.827 for hippocampal segmentation, which outperform classic 3D UNet. The efficiency and accuracy of the proposed methods suggests that it may facilitate the study of the hippocampus for large-scale studies.\",\"PeriodicalId\":396802,\"journal\":{\"name\":\"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNISC54316.2021.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC54316.2021.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

海马体是阿尔茨海默病(AD)中最早受影响的大脑区域之一。为了帮助AD的诊断,人们对海马萎缩进行了广泛的研究,但海马的准确分割一直是一个难题。在这项研究中,我们提出了一个三维多尺度多注意UNet,使用多尺度初始模块、残差连接和注意模块进行海马自动分割。在HarP数据集上的实验结果表明,我们提出的方法可以实现海马分割的平均Dice系数为0.827,优于经典的3D UNet。所提出的方法的效率和准确性表明,它可能有助于对海马体进行大规模研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 3D Multi-Scale Multi-Attention UNet for Automatic Hippocampal Segmentation
Hippocampus is one of the first affected brain regions in Alzheimer's disease (AD). To help AD diagnosis, hippocampal atrophy have been studied extensively, but accurate segmentation of hippocampus has always been a difficult problem. In this study, we propose a 3D multi-scale multi-attention UNet with the use of multi-scale inception module, residual connections and attention modules for automatic hippocampal segmentation. Experimental results on the HarP dataset show that our proposed method can achieve average Dice coefficient of 0.827 for hippocampal segmentation, which outperform classic 3D UNet. The efficiency and accuracy of the proposed methods suggests that it may facilitate the study of the hippocampus for large-scale studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信