A. Abedin, L. Zurauskaite, A. Asadollahi, K. Garidis, G. Jayakumar, B. Malm, P. Hellström, M. Östling
{"title":"用于单片式三维集成的 GOI 制造","authors":"A. Abedin, L. Zurauskaite, A. Asadollahi, K. Garidis, G. Jayakumar, B. Malm, P. Hellström, M. Östling","doi":"10.1109/S3S.2017.8309201","DOIUrl":null,"url":null,"abstract":"A low temperature (T<inf>max</inf>=350 °C) process for Ge on insulator (GOI) substrate fabrication with thicknesses of less than 25 nm is reported in this work. The process is based on a single step epitaxial growth of a Ge/SiGe/Ge stack on Si, room temperature wafer bonding, and an etch-back process using Si<inf>0</inf>.<inf>5</inf>Ge<inf>0</inf>.<inf>5</inf> as an etch-stop layer. Using this technique, GOI substrates with surface roughness below 0.5 nm, thickness nonuniformity of less than 3 nm, and residual p-type doping of less than 10<sup>16</sup> cm<sup>−3</sup> are achieved. Ge pFETs are fabricated (T<inf>max</inf>=600 °C) on the GOI wafer with 70% yield. The devices exhibit a negative threshold voltage of −0.18 V and 60% higher mobility than the SOI pFET reference devices.","PeriodicalId":333587,"journal":{"name":"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"GOI fabrication for monolithic 3D integration\",\"authors\":\"A. Abedin, L. Zurauskaite, A. Asadollahi, K. Garidis, G. Jayakumar, B. Malm, P. Hellström, M. Östling\",\"doi\":\"10.1109/S3S.2017.8309201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low temperature (T<inf>max</inf>=350 °C) process for Ge on insulator (GOI) substrate fabrication with thicknesses of less than 25 nm is reported in this work. The process is based on a single step epitaxial growth of a Ge/SiGe/Ge stack on Si, room temperature wafer bonding, and an etch-back process using Si<inf>0</inf>.<inf>5</inf>Ge<inf>0</inf>.<inf>5</inf> as an etch-stop layer. Using this technique, GOI substrates with surface roughness below 0.5 nm, thickness nonuniformity of less than 3 nm, and residual p-type doping of less than 10<sup>16</sup> cm<sup>−3</sup> are achieved. Ge pFETs are fabricated (T<inf>max</inf>=600 °C) on the GOI wafer with 70% yield. The devices exhibit a negative threshold voltage of −0.18 V and 60% higher mobility than the SOI pFET reference devices.\",\"PeriodicalId\":333587,\"journal\":{\"name\":\"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/S3S.2017.8309201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2017.8309201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
这项研究报告了一种用于制造厚度小于 25 纳米的绝缘体上 Ge(GOI)衬底的低温(Tmax=350 °C)工艺。该工艺基于在硅上单步外延生长 Ge/SiGe/Ge 叠层、室温晶圆键合,以及使用 Si0.5Ge0.5 作为蚀刻停止层的蚀刻-返回工艺。利用这种技术,GOI 衬底的表面粗糙度低于 0.5 nm,厚度不均匀度小于 3 nm,残余 p 型掺杂小于 1016 cm-3。在 GOI 晶圆上制造的 Ge pFET(Tmax=600 °C)成品率为 70%。这些器件的负阈值电压为 -0.18 V,迁移率比 SOI pFET 参考器件高 60%。
A low temperature (Tmax=350 °C) process for Ge on insulator (GOI) substrate fabrication with thicknesses of less than 25 nm is reported in this work. The process is based on a single step epitaxial growth of a Ge/SiGe/Ge stack on Si, room temperature wafer bonding, and an etch-back process using Si0.5Ge0.5 as an etch-stop layer. Using this technique, GOI substrates with surface roughness below 0.5 nm, thickness nonuniformity of less than 3 nm, and residual p-type doping of less than 1016 cm−3 are achieved. Ge pFETs are fabricated (Tmax=600 °C) on the GOI wafer with 70% yield. The devices exhibit a negative threshold voltage of −0.18 V and 60% higher mobility than the SOI pFET reference devices.