Jose Oviedo-Barriga, O. Carbajal-Espinosa, Luis Enrique González Jiménez, B. Castillo-Toledo, E. Bayro-Corrochano
{"title":"基于几何代数和滑动模式的仿生双足机器人鲁棒跟踪","authors":"Jose Oviedo-Barriga, O. Carbajal-Espinosa, Luis Enrique González Jiménez, B. Castillo-Toledo, E. Bayro-Corrochano","doi":"10.1109/ICRA.2013.6631338","DOIUrl":null,"url":null,"abstract":"Controlling walking biped robots is a challenging problem due to its complex and uncertain dynamics. In order to tackle this, we propose a sliding mode controller based on a dynamic model which was obtained using the conformal geometric algebra approach (CGA). The CGA framework permits us to use lines, points, and other geometric entities, to obtain the Lagrange equations of the system. The references for the joints of the robot were bio-inspired in the kinematics of a walking human body. The first and second derivatives of the reference signal were obtained through an exact robust differentiator based on high order sliding modes. The performance of the proposed control scheme is illustrated through simulation.","PeriodicalId":259746,"journal":{"name":"2013 IEEE International Conference on Robotics and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Robust tracking of bio-inspired references for a biped robot using geometric algebra and sliding modes\",\"authors\":\"Jose Oviedo-Barriga, O. Carbajal-Espinosa, Luis Enrique González Jiménez, B. Castillo-Toledo, E. Bayro-Corrochano\",\"doi\":\"10.1109/ICRA.2013.6631338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling walking biped robots is a challenging problem due to its complex and uncertain dynamics. In order to tackle this, we propose a sliding mode controller based on a dynamic model which was obtained using the conformal geometric algebra approach (CGA). The CGA framework permits us to use lines, points, and other geometric entities, to obtain the Lagrange equations of the system. The references for the joints of the robot were bio-inspired in the kinematics of a walking human body. The first and second derivatives of the reference signal were obtained through an exact robust differentiator based on high order sliding modes. The performance of the proposed control scheme is illustrated through simulation.\",\"PeriodicalId\":259746,\"journal\":{\"name\":\"2013 IEEE International Conference on Robotics and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2013.6631338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2013.6631338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust tracking of bio-inspired references for a biped robot using geometric algebra and sliding modes
Controlling walking biped robots is a challenging problem due to its complex and uncertain dynamics. In order to tackle this, we propose a sliding mode controller based on a dynamic model which was obtained using the conformal geometric algebra approach (CGA). The CGA framework permits us to use lines, points, and other geometric entities, to obtain the Lagrange equations of the system. The references for the joints of the robot were bio-inspired in the kinematics of a walking human body. The first and second derivatives of the reference signal were obtained through an exact robust differentiator based on high order sliding modes. The performance of the proposed control scheme is illustrated through simulation.