一个独立的混合可再生能源系统的规模和建模

Monaaf D. A. Al-Falahi, Kutaiba Sabah Nimma, S. Jayasinghe, H. Enshaei
{"title":"一个独立的混合可再生能源系统的规模和建模","authors":"Monaaf D. A. Al-Falahi, Kutaiba Sabah Nimma, S. Jayasinghe, H. Enshaei","doi":"10.1109/SPEC.2016.7846215","DOIUrl":null,"url":null,"abstract":"This paper presents optimal sizing, modeling and performance analysis of a standalone PV/Wind/Battery Hybrid Energy System (PWB-HES) for an off-grid residential application in Ansons Bay, Tasmania, Australia. The aim of the study is to find the optimal size of the photovoltaic (PV) panel, wind generation system (WGS) and battery storage (BS) that can satisfy the varying load demand throughout the year. In the proposed PWB-HES sources and the battery are connected to a common DC bus. A voltage source inverter is used to connect the dc bus to the ac side. The optimal combination of sources and energy storage was obtained based on solar irradiance, wind speed and typical residential demand of the selected site. The optimal sizing algorithm was implemented using the HOMER software. The optimal system is then modeled and simulated with SIMULINK software in order to examine the complementary characteristics of the solar and the wind power system to satisfy the load demand. Simulation results showed that the PWB-HES with optimal size obtained through HOMER is able to meet the load demand amidst the changes in solar irradiance and wind speed.","PeriodicalId":403316,"journal":{"name":"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Sizing and modeling of a standalone hybrid renewable energy system\",\"authors\":\"Monaaf D. A. Al-Falahi, Kutaiba Sabah Nimma, S. Jayasinghe, H. Enshaei\",\"doi\":\"10.1109/SPEC.2016.7846215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents optimal sizing, modeling and performance analysis of a standalone PV/Wind/Battery Hybrid Energy System (PWB-HES) for an off-grid residential application in Ansons Bay, Tasmania, Australia. The aim of the study is to find the optimal size of the photovoltaic (PV) panel, wind generation system (WGS) and battery storage (BS) that can satisfy the varying load demand throughout the year. In the proposed PWB-HES sources and the battery are connected to a common DC bus. A voltage source inverter is used to connect the dc bus to the ac side. The optimal combination of sources and energy storage was obtained based on solar irradiance, wind speed and typical residential demand of the selected site. The optimal sizing algorithm was implemented using the HOMER software. The optimal system is then modeled and simulated with SIMULINK software in order to examine the complementary characteristics of the solar and the wind power system to satisfy the load demand. Simulation results showed that the PWB-HES with optimal size obtained through HOMER is able to meet the load demand amidst the changes in solar irradiance and wind speed.\",\"PeriodicalId\":403316,\"journal\":{\"name\":\"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEC.2016.7846215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC.2016.7846215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文介绍了用于澳大利亚塔斯马尼亚州Ansons湾离网住宅应用的独立光伏/风能/电池混合能源系统(PWB-HES)的最佳尺寸,建模和性能分析。研究的目的是找到光伏(PV)面板、风力发电系统(WGS)和电池存储(BS)的最佳尺寸,以满足全年变化的负荷需求。在建议的PWB-HES源和电池连接到一个共同的直流总线。电压源逆变器用于将直流母线连接到交流侧。根据所选场地的太阳辐照度、风速和典型住宅需求,获得了最优的能源和储能组合。采用HOMER软件实现了最优尺寸算法。然后利用SIMULINK软件对优化后的系统进行建模和仿真,以检验太阳能和风力发电系统的互补特性以满足负荷需求。仿真结果表明,在太阳辐照度和风速变化的情况下,优化尺寸的PWB-HES能够满足负荷需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sizing and modeling of a standalone hybrid renewable energy system
This paper presents optimal sizing, modeling and performance analysis of a standalone PV/Wind/Battery Hybrid Energy System (PWB-HES) for an off-grid residential application in Ansons Bay, Tasmania, Australia. The aim of the study is to find the optimal size of the photovoltaic (PV) panel, wind generation system (WGS) and battery storage (BS) that can satisfy the varying load demand throughout the year. In the proposed PWB-HES sources and the battery are connected to a common DC bus. A voltage source inverter is used to connect the dc bus to the ac side. The optimal combination of sources and energy storage was obtained based on solar irradiance, wind speed and typical residential demand of the selected site. The optimal sizing algorithm was implemented using the HOMER software. The optimal system is then modeled and simulated with SIMULINK software in order to examine the complementary characteristics of the solar and the wind power system to satisfy the load demand. Simulation results showed that the PWB-HES with optimal size obtained through HOMER is able to meet the load demand amidst the changes in solar irradiance and wind speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信