Shahana Bano, S. A. Shah, W. Ahmad, Muhammad Ilyas
{"title":"利用多趋势二进制码描述符和支持向量机对随身行李进行检测和分类","authors":"Shahana Bano, S. A. Shah, W. Ahmad, Muhammad Ilyas","doi":"10.35453/nedjr-ascn-2019-0100","DOIUrl":null,"url":null,"abstract":"Automatic video surveillance systems have gained significant importance due to an increase in crime rate over the last two decades. Automatic baggage detection through surveillance camera can help in security and monitoring in public places. A detection algorithm for humans (with or without carrying baggage) is proposed in this paper. Detection in the proposed method can be achieved by employing spatial information of the baggage of various texture patterns with locus to the human body carrying it. To extract the features of body parts (such as head, trunk and limbs), the descriptor is exhibited and trained by the support vector machine classifier. The proposed approach has been widely assessed by using publically available datasets. The experimental results have shown that the proposed approach is viable for baggage detection and classification as compared to the other available approaches.","PeriodicalId":259216,"journal":{"name":"NED University Journal of Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CARRIED BAGGAGE DETECTION AND CLASSIFICATION USING MULTI-TREND BINARY CODE DESCRIPTOR AND SUPPORT VECTOR MACHINE\",\"authors\":\"Shahana Bano, S. A. Shah, W. Ahmad, Muhammad Ilyas\",\"doi\":\"10.35453/nedjr-ascn-2019-0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic video surveillance systems have gained significant importance due to an increase in crime rate over the last two decades. Automatic baggage detection through surveillance camera can help in security and monitoring in public places. A detection algorithm for humans (with or without carrying baggage) is proposed in this paper. Detection in the proposed method can be achieved by employing spatial information of the baggage of various texture patterns with locus to the human body carrying it. To extract the features of body parts (such as head, trunk and limbs), the descriptor is exhibited and trained by the support vector machine classifier. The proposed approach has been widely assessed by using publically available datasets. The experimental results have shown that the proposed approach is viable for baggage detection and classification as compared to the other available approaches.\",\"PeriodicalId\":259216,\"journal\":{\"name\":\"NED University Journal of Research\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NED University Journal of Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35453/nedjr-ascn-2019-0100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NED University Journal of Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35453/nedjr-ascn-2019-0100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CARRIED BAGGAGE DETECTION AND CLASSIFICATION USING MULTI-TREND BINARY CODE DESCRIPTOR AND SUPPORT VECTOR MACHINE
Automatic video surveillance systems have gained significant importance due to an increase in crime rate over the last two decades. Automatic baggage detection through surveillance camera can help in security and monitoring in public places. A detection algorithm for humans (with or without carrying baggage) is proposed in this paper. Detection in the proposed method can be achieved by employing spatial information of the baggage of various texture patterns with locus to the human body carrying it. To extract the features of body parts (such as head, trunk and limbs), the descriptor is exhibited and trained by the support vector machine classifier. The proposed approach has been widely assessed by using publically available datasets. The experimental results have shown that the proposed approach is viable for baggage detection and classification as compared to the other available approaches.