Ziran Wang, Guoyuan Wu, Peng Hao, K. Boriboonsomsin, M. Barth
{"title":"开发全排生态合作自适应巡航控制(CACC)系统","authors":"Ziran Wang, Guoyuan Wu, Peng Hao, K. Boriboonsomsin, M. Barth","doi":"10.1109/IVS.2017.7995884","DOIUrl":null,"url":null,"abstract":"Connected and automated vehicle (CAV) technology has become increasingly popular. As an example, Cooperative Adaptive Cruise Control (CACC) systems are of high interest, allowing CAVs to communicate and cooperate with each other to form platoons, where one vehicle follows another with a predefined spacing or time gap. Although numerous studies have been conducted on CACC systems, very few have examined the protocols from the perspective of environmental sustainability, not to mention from a platoon-wide consideration. In this study, we propose a vehicle-to-vehicle (V2V) communication based Eco-CACC system, aiming to minimize the platoon-wide energy consumption and pollutant emissions at different stages of the CACC operation. A full spectrum of environmentally-friendly CACC maneuvers are explored and the associated protocols are developed, including sequence determination, gap closing and opening, platoon cruising with gap regulation, and platoon joining and splitting. Simulation studies of different scenarios are conducted using MATLAB/Simulink. Compared to an existing CACC system, the proposed one can achieve additional 2% energy savings and additional 17% pollutant emissions reductions during the platoon joining scenario.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Developing a platoon-wide Eco-Cooperative Adaptive Cruise Control (CACC) system\",\"authors\":\"Ziran Wang, Guoyuan Wu, Peng Hao, K. Boriboonsomsin, M. Barth\",\"doi\":\"10.1109/IVS.2017.7995884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Connected and automated vehicle (CAV) technology has become increasingly popular. As an example, Cooperative Adaptive Cruise Control (CACC) systems are of high interest, allowing CAVs to communicate and cooperate with each other to form platoons, where one vehicle follows another with a predefined spacing or time gap. Although numerous studies have been conducted on CACC systems, very few have examined the protocols from the perspective of environmental sustainability, not to mention from a platoon-wide consideration. In this study, we propose a vehicle-to-vehicle (V2V) communication based Eco-CACC system, aiming to minimize the platoon-wide energy consumption and pollutant emissions at different stages of the CACC operation. A full spectrum of environmentally-friendly CACC maneuvers are explored and the associated protocols are developed, including sequence determination, gap closing and opening, platoon cruising with gap regulation, and platoon joining and splitting. Simulation studies of different scenarios are conducted using MATLAB/Simulink. Compared to an existing CACC system, the proposed one can achieve additional 2% energy savings and additional 17% pollutant emissions reductions during the platoon joining scenario.\",\"PeriodicalId\":143367,\"journal\":{\"name\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2017.7995884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Developing a platoon-wide Eco-Cooperative Adaptive Cruise Control (CACC) system
Connected and automated vehicle (CAV) technology has become increasingly popular. As an example, Cooperative Adaptive Cruise Control (CACC) systems are of high interest, allowing CAVs to communicate and cooperate with each other to form platoons, where one vehicle follows another with a predefined spacing or time gap. Although numerous studies have been conducted on CACC systems, very few have examined the protocols from the perspective of environmental sustainability, not to mention from a platoon-wide consideration. In this study, we propose a vehicle-to-vehicle (V2V) communication based Eco-CACC system, aiming to minimize the platoon-wide energy consumption and pollutant emissions at different stages of the CACC operation. A full spectrum of environmentally-friendly CACC maneuvers are explored and the associated protocols are developed, including sequence determination, gap closing and opening, platoon cruising with gap regulation, and platoon joining and splitting. Simulation studies of different scenarios are conducted using MATLAB/Simulink. Compared to an existing CACC system, the proposed one can achieve additional 2% energy savings and additional 17% pollutant emissions reductions during the platoon joining scenario.