开发全排生态合作自适应巡航控制(CACC)系统

Ziran Wang, Guoyuan Wu, Peng Hao, K. Boriboonsomsin, M. Barth
{"title":"开发全排生态合作自适应巡航控制(CACC)系统","authors":"Ziran Wang, Guoyuan Wu, Peng Hao, K. Boriboonsomsin, M. Barth","doi":"10.1109/IVS.2017.7995884","DOIUrl":null,"url":null,"abstract":"Connected and automated vehicle (CAV) technology has become increasingly popular. As an example, Cooperative Adaptive Cruise Control (CACC) systems are of high interest, allowing CAVs to communicate and cooperate with each other to form platoons, where one vehicle follows another with a predefined spacing or time gap. Although numerous studies have been conducted on CACC systems, very few have examined the protocols from the perspective of environmental sustainability, not to mention from a platoon-wide consideration. In this study, we propose a vehicle-to-vehicle (V2V) communication based Eco-CACC system, aiming to minimize the platoon-wide energy consumption and pollutant emissions at different stages of the CACC operation. A full spectrum of environmentally-friendly CACC maneuvers are explored and the associated protocols are developed, including sequence determination, gap closing and opening, platoon cruising with gap regulation, and platoon joining and splitting. Simulation studies of different scenarios are conducted using MATLAB/Simulink. Compared to an existing CACC system, the proposed one can achieve additional 2% energy savings and additional 17% pollutant emissions reductions during the platoon joining scenario.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Developing a platoon-wide Eco-Cooperative Adaptive Cruise Control (CACC) system\",\"authors\":\"Ziran Wang, Guoyuan Wu, Peng Hao, K. Boriboonsomsin, M. Barth\",\"doi\":\"10.1109/IVS.2017.7995884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Connected and automated vehicle (CAV) technology has become increasingly popular. As an example, Cooperative Adaptive Cruise Control (CACC) systems are of high interest, allowing CAVs to communicate and cooperate with each other to form platoons, where one vehicle follows another with a predefined spacing or time gap. Although numerous studies have been conducted on CACC systems, very few have examined the protocols from the perspective of environmental sustainability, not to mention from a platoon-wide consideration. In this study, we propose a vehicle-to-vehicle (V2V) communication based Eco-CACC system, aiming to minimize the platoon-wide energy consumption and pollutant emissions at different stages of the CACC operation. A full spectrum of environmentally-friendly CACC maneuvers are explored and the associated protocols are developed, including sequence determination, gap closing and opening, platoon cruising with gap regulation, and platoon joining and splitting. Simulation studies of different scenarios are conducted using MATLAB/Simulink. Compared to an existing CACC system, the proposed one can achieve additional 2% energy savings and additional 17% pollutant emissions reductions during the platoon joining scenario.\",\"PeriodicalId\":143367,\"journal\":{\"name\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2017.7995884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

联网和自动驾驶汽车(CAV)技术越来越受欢迎。例如,协作式自适应巡航控制系统(Cooperative Adaptive Cruise Control, CACC)备受关注,它允许自动驾驶汽车相互通信和合作,形成队列,其中一辆车在预定义的间隔或时间间隔内跟随另一辆车。虽然对ccc系统进行了许多研究,但很少从环境可持续性的角度审查协议,更不用说从整个排的考虑。在本研究中,我们提出了一种基于车对车(V2V)通信的Eco-CACC系统,旨在最大限度地减少CACC运行不同阶段的全排能耗和污染物排放。研究了全范围的环境友好型CACC机动,并制定了相关协议,包括序列确定、间隙关闭和打开、间隙调节的排巡航以及排加入和分裂。利用MATLAB/Simulink对不同场景进行了仿真研究。与现有的CACC系统相比,在排加入方案中,该系统可以额外节省2%的能源,减少17%的污染物排放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing a platoon-wide Eco-Cooperative Adaptive Cruise Control (CACC) system
Connected and automated vehicle (CAV) technology has become increasingly popular. As an example, Cooperative Adaptive Cruise Control (CACC) systems are of high interest, allowing CAVs to communicate and cooperate with each other to form platoons, where one vehicle follows another with a predefined spacing or time gap. Although numerous studies have been conducted on CACC systems, very few have examined the protocols from the perspective of environmental sustainability, not to mention from a platoon-wide consideration. In this study, we propose a vehicle-to-vehicle (V2V) communication based Eco-CACC system, aiming to minimize the platoon-wide energy consumption and pollutant emissions at different stages of the CACC operation. A full spectrum of environmentally-friendly CACC maneuvers are explored and the associated protocols are developed, including sequence determination, gap closing and opening, platoon cruising with gap regulation, and platoon joining and splitting. Simulation studies of different scenarios are conducted using MATLAB/Simulink. Compared to an existing CACC system, the proposed one can achieve additional 2% energy savings and additional 17% pollutant emissions reductions during the platoon joining scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信