基于单片机的SMARTEX-C高压高速触发控制电路

M. Shah, H. Mandaliya, L. Lachhvani, Manu Bajpai, R. Rajpal
{"title":"基于单片机的SMARTEX-C高压高速触发控制电路","authors":"M. Shah, H. Mandaliya, L. Lachhvani, Manu Bajpai, R. Rajpal","doi":"10.37394/232017.2021.12.14","DOIUrl":null,"url":null,"abstract":"Microcontroller based trigger control circuit for fast pulsing of electrode potentials on wide range of time scales has been designed, installed, and tested for electron plasma experiments which are carried out in partial toroidal trap SMall Aspect Ratio Toroidal Electron plasma EXperiment in C – shaped geometry (SMARTEX – C), a device to create and confine non-neutral plasma (electron plasma). The sequence of trap operation is inject-hold-dump for which electrodes need to be pulsed with applied voltages at a high switching speed of few nanoseconds. Also this sequence of operation needs to be controlled over a very wide range of time scales from few microseconds to few seconds. As the available COTS (Commercial-Off-The-Shelf) high voltage DC power supplies generally do not provide this feature of fast switching at nanosecond time scale, MOSFET based circuit is developed which provides fast switching in the range of 20 – 100 nanoseconds of high voltages (200Vdc - 500Vdc) of multiple electrodes. The timing pulse widths of these trigger pulses are controlled using a microcontroller-based circuit. This experimental set-up also requires the triggering of a high current dc power supply used for an Electro-magnet (Toroidal Field Coil) to generate a toroidal magnetic field, at the start of this experiment. For this purpose, a Silicon Controlled Rectifier (SCR) based circuit is used. The gate pulse to trigger the SCR circuit is also generated from this microcontroller-based circuit. National Instrument’s LabVIEW software based Graphical User Interface (GUI) is developed for triggering the SCR and electrodes with a programmable time period through the serial link.","PeriodicalId":202814,"journal":{"name":"WSEAS TRANSACTIONS ON ELECTRONICS","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microcontroller Based High Voltage, High Speed Trigger Control Circuit for SMARTEX-C\",\"authors\":\"M. Shah, H. Mandaliya, L. Lachhvani, Manu Bajpai, R. Rajpal\",\"doi\":\"10.37394/232017.2021.12.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microcontroller based trigger control circuit for fast pulsing of electrode potentials on wide range of time scales has been designed, installed, and tested for electron plasma experiments which are carried out in partial toroidal trap SMall Aspect Ratio Toroidal Electron plasma EXperiment in C – shaped geometry (SMARTEX – C), a device to create and confine non-neutral plasma (electron plasma). The sequence of trap operation is inject-hold-dump for which electrodes need to be pulsed with applied voltages at a high switching speed of few nanoseconds. Also this sequence of operation needs to be controlled over a very wide range of time scales from few microseconds to few seconds. As the available COTS (Commercial-Off-The-Shelf) high voltage DC power supplies generally do not provide this feature of fast switching at nanosecond time scale, MOSFET based circuit is developed which provides fast switching in the range of 20 – 100 nanoseconds of high voltages (200Vdc - 500Vdc) of multiple electrodes. The timing pulse widths of these trigger pulses are controlled using a microcontroller-based circuit. This experimental set-up also requires the triggering of a high current dc power supply used for an Electro-magnet (Toroidal Field Coil) to generate a toroidal magnetic field, at the start of this experiment. For this purpose, a Silicon Controlled Rectifier (SCR) based circuit is used. The gate pulse to trigger the SCR circuit is also generated from this microcontroller-based circuit. National Instrument’s LabVIEW software based Graphical User Interface (GUI) is developed for triggering the SCR and electrodes with a programmable time period through the serial link.\",\"PeriodicalId\":202814,\"journal\":{\"name\":\"WSEAS TRANSACTIONS ON ELECTRONICS\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS TRANSACTIONS ON ELECTRONICS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232017.2021.12.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON ELECTRONICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232017.2021.12.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设计、安装并测试了基于微控制器的大时间尺度电极电位快速脉冲触发控制电路,用于在局部环形阱中进行的电子等离子体实验(SMARTEX - C),这是一种产生和限制非中性等离子体(电子等离子体)的装置。陷阱操作的顺序是注入-保持-转储,电极需要以几纳秒的高开关速度在外加电压下脉冲。此外,这个操作序列需要在从几微秒到几秒的非常宽的时间尺度范围内进行控制。由于现有的COTS(商用现货)高压直流电源通常不提供这种在纳秒时间尺度上的快速开关特性,因此开发了基于MOSFET的电路,该电路可在20 - 100纳秒的高电压(200Vdc - 500Vdc)范围内提供多个电极的快速开关。这些触发脉冲的定时脉冲宽度使用基于微控制器的电路进行控制。在实验开始时,该实验装置还需要触发用于电磁铁(环向磁场线圈)的大电流直流电源以产生环向磁场。为此,使用了基于硅控整流器(SCR)的电路。触发可控硅电路的门脉冲也由这个基于微控制器的电路产生。美国国家仪器公司基于LabVIEW软件的图形用户界面(GUI)是开发用于触发可控硅和电极与可编程的时间周期通过串行链路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microcontroller Based High Voltage, High Speed Trigger Control Circuit for SMARTEX-C
Microcontroller based trigger control circuit for fast pulsing of electrode potentials on wide range of time scales has been designed, installed, and tested for electron plasma experiments which are carried out in partial toroidal trap SMall Aspect Ratio Toroidal Electron plasma EXperiment in C – shaped geometry (SMARTEX – C), a device to create and confine non-neutral plasma (electron plasma). The sequence of trap operation is inject-hold-dump for which electrodes need to be pulsed with applied voltages at a high switching speed of few nanoseconds. Also this sequence of operation needs to be controlled over a very wide range of time scales from few microseconds to few seconds. As the available COTS (Commercial-Off-The-Shelf) high voltage DC power supplies generally do not provide this feature of fast switching at nanosecond time scale, MOSFET based circuit is developed which provides fast switching in the range of 20 – 100 nanoseconds of high voltages (200Vdc - 500Vdc) of multiple electrodes. The timing pulse widths of these trigger pulses are controlled using a microcontroller-based circuit. This experimental set-up also requires the triggering of a high current dc power supply used for an Electro-magnet (Toroidal Field Coil) to generate a toroidal magnetic field, at the start of this experiment. For this purpose, a Silicon Controlled Rectifier (SCR) based circuit is used. The gate pulse to trigger the SCR circuit is also generated from this microcontroller-based circuit. National Instrument’s LabVIEW software based Graphical User Interface (GUI) is developed for triggering the SCR and electrodes with a programmable time period through the serial link.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信