学习辅助侧信道延迟分析硬件木马检测

Ashka Vakil, F. Behnia, Ali Mirzaeian, H. Homayoun, Naghmeh Karimi, Avesta Sasan
{"title":"学习辅助侧信道延迟分析硬件木马检测","authors":"Ashka Vakil, F. Behnia, Ali Mirzaeian, H. Homayoun, Naghmeh Karimi, Avesta Sasan","doi":"10.1109/ISQED48828.2020.9137007","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a Learning Assisted Side Channel delay Analysis (LASCA) methodology for Hardware Trojan detection. Our proposed solution, unlike the prior art, does not require a Golden IC. Instead, it trains a Neural Network to act as a process tracking watchdog for correlating the static timing data (produced at design time) to the delay information obtained from clock frequency sweeping (at test time) for the purpose of Trojan detection. Using the LASCA flow, we detect close to 90% of Hardware Trojans in the simulated scenarios.","PeriodicalId":225828,"journal":{"name":"2020 21st International Symposium on Quality Electronic Design (ISQED)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"LASCA: Learning Assisted Side Channel Delay Analysis for Hardware Trojan Detection\",\"authors\":\"Ashka Vakil, F. Behnia, Ali Mirzaeian, H. Homayoun, Naghmeh Karimi, Avesta Sasan\",\"doi\":\"10.1109/ISQED48828.2020.9137007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a Learning Assisted Side Channel delay Analysis (LASCA) methodology for Hardware Trojan detection. Our proposed solution, unlike the prior art, does not require a Golden IC. Instead, it trains a Neural Network to act as a process tracking watchdog for correlating the static timing data (produced at design time) to the delay information obtained from clock frequency sweeping (at test time) for the purpose of Trojan detection. Using the LASCA flow, we detect close to 90% of Hardware Trojans in the simulated scenarios.\",\"PeriodicalId\":225828,\"journal\":{\"name\":\"2020 21st International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 21st International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED48828.2020.9137007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 21st International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED48828.2020.9137007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们介绍了一种用于硬件木马检测的学习辅助侧信道延迟分析(LASCA)方法。与现有技术不同,我们提出的解决方案不需要Golden IC。相反,它训练神经网络作为过程跟踪看门狗,将静态定时数据(在设计时产生)与从时钟频率扫描(在测试时)获得的延迟信息相关联,以检测特洛伊木马。使用LASCA流程,我们在模拟场景中检测到接近90%的硬件木马。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LASCA: Learning Assisted Side Channel Delay Analysis for Hardware Trojan Detection
In this paper, we introduce a Learning Assisted Side Channel delay Analysis (LASCA) methodology for Hardware Trojan detection. Our proposed solution, unlike the prior art, does not require a Golden IC. Instead, it trains a Neural Network to act as a process tracking watchdog for correlating the static timing data (produced at design time) to the delay information obtained from clock frequency sweeping (at test time) for the purpose of Trojan detection. Using the LASCA flow, we detect close to 90% of Hardware Trojans in the simulated scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信