符号动力学耦合神经网络模型的参数估计

Jiong Ding, Hong Zhang, Qinye Tong
{"title":"符号动力学耦合神经网络模型的参数估计","authors":"Jiong Ding, Hong Zhang, Qinye Tong","doi":"10.1109/ISBB.2011.6107700","DOIUrl":null,"url":null,"abstract":"This paper presents work on parameter estimation method for simple coupling neural network models. Different from the traditional voltage-clamp technique to extract each ion channel parameters of a neuron, the method proposed in this paper only need to record the inter-spike interval sequences of the neuron's output. Based on the principle of symbolic dynamics, the action potential sequences can be symbolized without high precision measurement. By computing the distance between symbolic sequences can analyze the degree of nearness between the two orbits, and then use dichotomy to find the optimal parameters. The longer the output spike sequence is, the higher precision estimation can be achieved. The proposed method is efficient for parameter estimation in unstable neural systems, and has a certain reference value for creating neural models from neural electrophysiological experiments.","PeriodicalId":345164,"journal":{"name":"International Symposium on Bioelectronics and Bioinformations 2011","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter estimation for coupling neural network models with symbolic dynamics\",\"authors\":\"Jiong Ding, Hong Zhang, Qinye Tong\",\"doi\":\"10.1109/ISBB.2011.6107700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents work on parameter estimation method for simple coupling neural network models. Different from the traditional voltage-clamp technique to extract each ion channel parameters of a neuron, the method proposed in this paper only need to record the inter-spike interval sequences of the neuron's output. Based on the principle of symbolic dynamics, the action potential sequences can be symbolized without high precision measurement. By computing the distance between symbolic sequences can analyze the degree of nearness between the two orbits, and then use dichotomy to find the optimal parameters. The longer the output spike sequence is, the higher precision estimation can be achieved. The proposed method is efficient for parameter estimation in unstable neural systems, and has a certain reference value for creating neural models from neural electrophysiological experiments.\",\"PeriodicalId\":345164,\"journal\":{\"name\":\"International Symposium on Bioelectronics and Bioinformations 2011\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Bioelectronics and Bioinformations 2011\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBB.2011.6107700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Bioelectronics and Bioinformations 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBB.2011.6107700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了简单耦合神经网络模型的参数估计方法。与传统的电压钳技术提取神经元的每个离子通道参数不同,本文提出的方法只需要记录神经元输出的尖峰间隔序列。基于符号动力学原理,无需高精度测量即可实现动作电位序列的符号化。通过计算符号序列之间的距离可以分析两个轨道之间的接近程度,然后利用二分法找到最优参数。输出尖峰序列越长,估计精度越高。该方法对不稳定神经系统的参数估计是有效的,对通过神经电生理实验建立神经模型具有一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter estimation for coupling neural network models with symbolic dynamics
This paper presents work on parameter estimation method for simple coupling neural network models. Different from the traditional voltage-clamp technique to extract each ion channel parameters of a neuron, the method proposed in this paper only need to record the inter-spike interval sequences of the neuron's output. Based on the principle of symbolic dynamics, the action potential sequences can be symbolized without high precision measurement. By computing the distance between symbolic sequences can analyze the degree of nearness between the two orbits, and then use dichotomy to find the optimal parameters. The longer the output spike sequence is, the higher precision estimation can be achieved. The proposed method is efficient for parameter estimation in unstable neural systems, and has a certain reference value for creating neural models from neural electrophysiological experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信