首次探索顺序多模态为高质量的晶圆制造节省了大数据

L. Sheng, Wei Pan
{"title":"首次探索顺序多模态为高质量的晶圆制造节省了大数据","authors":"L. Sheng, Wei Pan","doi":"10.1109/ASMC.2018.8373211","DOIUrl":null,"url":null,"abstract":"The sequenced multimodality has been for the first time proposed and explored for effectively identifying the problematic tools in wafer processing. To demonstrate the merits and values of practicing this new concept, two case studies in product yield and in inline reliability were provided in detail. This new methodology can help save big data for enhancing the quality of wafer manufacturing.","PeriodicalId":349004,"journal":{"name":"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"478 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A first-time exploration into sequenced multimodality saves big data for high-quality wafer-manufacturing\",\"authors\":\"L. Sheng, Wei Pan\",\"doi\":\"10.1109/ASMC.2018.8373211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sequenced multimodality has been for the first time proposed and explored for effectively identifying the problematic tools in wafer processing. To demonstrate the merits and values of practicing this new concept, two case studies in product yield and in inline reliability were provided in detail. This new methodology can help save big data for enhancing the quality of wafer manufacturing.\",\"PeriodicalId\":349004,\"journal\":{\"name\":\"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"volume\":\"478 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC.2018.8373211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 29th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.2018.8373211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

序列多模态首次提出并探索了有效识别晶圆加工中有问题的工具。为了说明实践这一新概念的优点和价值,文中还详细介绍了产品成品率和在线可靠性两个方面的案例研究。这种新方法可以帮助节省大数据,提高晶圆制造的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A first-time exploration into sequenced multimodality saves big data for high-quality wafer-manufacturing
The sequenced multimodality has been for the first time proposed and explored for effectively identifying the problematic tools in wafer processing. To demonstrate the merits and values of practicing this new concept, two case studies in product yield and in inline reliability were provided in detail. This new methodology can help save big data for enhancing the quality of wafer manufacturing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信