财产险偿付能力预测的预测分析算法与工具比较研究

Lu Xiong
{"title":"财产险偿付能力预测的预测分析算法与工具比较研究","authors":"Lu Xiong","doi":"10.1145/3418653.3418663","DOIUrl":null,"url":null,"abstract":"The Insurance Regulatory Information System (IRIS) is a collection of 13 financial ratios used primarily by regulators to determine the solvency of an insurance company. Predicting the IRIS values can help companies to stay compliant with the IRIS regulation. Knowing ahead of time, the company can take actions to prevent potential IRIS unusual values and ensure its financial health. In this article, we compare the prediction accuracy and calculation speed of the current mainstream machine learning algorithms and libraries in predicting the IRIS ratios. Based on the best models selected from the comparison of the algorithms, we develop a Shiny R web APP for companies to predict their IRIS ratios for future years.","PeriodicalId":395705,"journal":{"name":"2020 The 4th International Conference on Business and Information Management","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparative Study of Predictive Analytics Algorithms and Tools on Property and Casualty Insurance Solvency Prediction\",\"authors\":\"Lu Xiong\",\"doi\":\"10.1145/3418653.3418663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Insurance Regulatory Information System (IRIS) is a collection of 13 financial ratios used primarily by regulators to determine the solvency of an insurance company. Predicting the IRIS values can help companies to stay compliant with the IRIS regulation. Knowing ahead of time, the company can take actions to prevent potential IRIS unusual values and ensure its financial health. In this article, we compare the prediction accuracy and calculation speed of the current mainstream machine learning algorithms and libraries in predicting the IRIS ratios. Based on the best models selected from the comparison of the algorithms, we develop a Shiny R web APP for companies to predict their IRIS ratios for future years.\",\"PeriodicalId\":395705,\"journal\":{\"name\":\"2020 The 4th International Conference on Business and Information Management\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 The 4th International Conference on Business and Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3418653.3418663\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 The 4th International Conference on Business and Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3418653.3418663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

保险监管信息系统(IRIS)是13个财务比率的集合,主要由监管机构用来确定保险公司的偿付能力。预测IRIS值可以帮助公司遵守IRIS法规。提前了解,公司可以采取措施防止潜在的IRIS异常值,并确保其财务健康。在本文中,我们比较了当前主流机器学习算法和库在预测IRIS比率方面的预测精度和计算速度。基于从算法比较中选择的最佳模型,我们为公司开发了一个Shiny R web应用程序,用于预测未来几年的IRIS比率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Study of Predictive Analytics Algorithms and Tools on Property and Casualty Insurance Solvency Prediction
The Insurance Regulatory Information System (IRIS) is a collection of 13 financial ratios used primarily by regulators to determine the solvency of an insurance company. Predicting the IRIS values can help companies to stay compliant with the IRIS regulation. Knowing ahead of time, the company can take actions to prevent potential IRIS unusual values and ensure its financial health. In this article, we compare the prediction accuracy and calculation speed of the current mainstream machine learning algorithms and libraries in predicting the IRIS ratios. Based on the best models selected from the comparison of the algorithms, we develop a Shiny R web APP for companies to predict their IRIS ratios for future years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信