EKF的粒子群参数优化和AKF的IM转子转速估计

K. El Merraoui, A. Ferdjouni
{"title":"EKF的粒子群参数优化和AKF的IM转子转速估计","authors":"K. El Merraoui, A. Ferdjouni","doi":"10.1109/EPEPEMC.2014.6980523","DOIUrl":null,"url":null,"abstract":"This paper presents the application of a Metaheuristic optimization algorithm for determining the parameters of a PI controller and the values of the state and measurement noise of Kalman Filter. The particle swarm optimization is a new technique that is used to solve complex problems. It minimizes a cost function under the cooperation of many individuals. Kalman Filter is used here to estimate the stator currents and rotor fluxes of the induction motor. The performances of the extended Kalman Filter and the adaptive Kalman Filter are analyzed. They are applied to estimate stator currents; rotor fluxes and rotor speed of the induction motor, and thus help to overcome the speed sensor, which is expensive and bulky. The extended Kalman Filter requires extending the state vector to rotor speed, which implies to use the linearization of the model. The adaptive Kalman Filter consists of determining the rotor speed adaptation law. The stability of the estimation error is proved using a Lyapunov function.","PeriodicalId":325670,"journal":{"name":"2014 16th International Power Electronics and Motion Control Conference and Exposition","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PSO parameters optimization for EKF and AKF for IM rotor speed estimation\",\"authors\":\"K. El Merraoui, A. Ferdjouni\",\"doi\":\"10.1109/EPEPEMC.2014.6980523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the application of a Metaheuristic optimization algorithm for determining the parameters of a PI controller and the values of the state and measurement noise of Kalman Filter. The particle swarm optimization is a new technique that is used to solve complex problems. It minimizes a cost function under the cooperation of many individuals. Kalman Filter is used here to estimate the stator currents and rotor fluxes of the induction motor. The performances of the extended Kalman Filter and the adaptive Kalman Filter are analyzed. They are applied to estimate stator currents; rotor fluxes and rotor speed of the induction motor, and thus help to overcome the speed sensor, which is expensive and bulky. The extended Kalman Filter requires extending the state vector to rotor speed, which implies to use the linearization of the model. The adaptive Kalman Filter consists of determining the rotor speed adaptation law. The stability of the estimation error is proved using a Lyapunov function.\",\"PeriodicalId\":325670,\"journal\":{\"name\":\"2014 16th International Power Electronics and Motion Control Conference and Exposition\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 16th International Power Electronics and Motion Control Conference and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPEPEMC.2014.6980523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Power Electronics and Motion Control Conference and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPEMC.2014.6980523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文应用元启发式优化算法确定PI控制器的参数以及卡尔曼滤波器的状态噪声和测量噪声的取值。粒子群优化是一种用于解决复杂问题的新技术。它在许多个体的合作下使成本函数最小化。本文采用卡尔曼滤波来估计感应电动机的定子电流和转子磁通。分析了扩展卡尔曼滤波器和自适应卡尔曼滤波器的性能。它们用于估计定子电流;转子磁通和转子转速的感应电机,从而有助于克服速度传感器,这是昂贵的和笨重的。扩展卡尔曼滤波器需要将状态向量扩展到转子转速,这意味着要对模型进行线性化。自适应卡尔曼滤波包括确定转子转速自适应规律。利用李雅普诺夫函数证明了估计误差的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PSO parameters optimization for EKF and AKF for IM rotor speed estimation
This paper presents the application of a Metaheuristic optimization algorithm for determining the parameters of a PI controller and the values of the state and measurement noise of Kalman Filter. The particle swarm optimization is a new technique that is used to solve complex problems. It minimizes a cost function under the cooperation of many individuals. Kalman Filter is used here to estimate the stator currents and rotor fluxes of the induction motor. The performances of the extended Kalman Filter and the adaptive Kalman Filter are analyzed. They are applied to estimate stator currents; rotor fluxes and rotor speed of the induction motor, and thus help to overcome the speed sensor, which is expensive and bulky. The extended Kalman Filter requires extending the state vector to rotor speed, which implies to use the linearization of the model. The adaptive Kalman Filter consists of determining the rotor speed adaptation law. The stability of the estimation error is proved using a Lyapunov function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信